ArticleOriginal scientific text
Title
A bound on the Laguerre polynomials
Authors 1
Affiliations
- Departamento de Análisis Matemático, Universidad de Sevilla, Apartado 1160, 41080 Sevilla, Spain
Abstract
We give the following bounds on Laguerre polynomials and their derivatives (α ≥ 0):
for all natural numbers k, p, n ≥ 0 and t ≥ 0. Also, we give (as the main result of this paper) a technique to estimate the order in k and p in bounds similar to the previous ones, which will be used to see that the estimate on k and p in the previous bounds is sharp and to give an estimate on k and p in other bounds on the Laguerre polynomials proved by Szegö.
Keywords
Laguerre polynomials
Bibliography
- A. J. Duran, The analytic functionals in the lower half plane as a Gel'fand-Shilov space, Math. Nachr. (to appear).
- A. J. Duran, The Stieltjes moments problem for rapidly decreasing functions, Proc. Amer. Math. Soc. 107 (1989), 731-741.
- A. J. Duran, Laguerre expansions of tempered distributions and generalized functions, J. Math. Anal. Appl. 150 (1990), 166-180.
- A. Erdélyi (ed.), Tables of Integral Transforms, Vol. 1, McGraw-Hill, New York 1953.
- A. Erdélyi (ed.), Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York 1953.
- I. M. Gel'fand et G. E. Shilov, Les distributions, Vol. 2, Dunod, Paris 1964.
- G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ. 23, New York 1959.