ArticleOriginal scientific text

Title

A bound on the Laguerre polynomials

Authors 1

Affiliations

  1. Departamento de Análisis Matemático, Universidad de Sevilla, Apartado 1160, 41080 Sevilla, Spain

Abstract

We give the following bounds on Laguerre polynomials and their derivatives (α ≥ 0): |tkdp(Lnα(t)e-t2)|2-min(α,k)4k(n+1)...(n+k)({n+p+max(α-k,0)}a{n}) for all natural numbers k, p, n ≥ 0 and t ≥ 0. Also, we give (as the main result of this paper) a technique to estimate the order in k and p in bounds similar to the previous ones, which will be used to see that the estimate on k and p in the previous bounds is sharp and to give an estimate on k and p in other bounds on the Laguerre polynomials proved by Szegö.

Keywords

Laguerre polynomials

Bibliography

  1. A. J. Duran, The analytic functionals in the lower half plane as a Gel'fand-Shilov space, Math. Nachr. (to appear).
  2. A. J. Duran, The Stieltjes moments problem for rapidly decreasing functions, Proc. Amer. Math. Soc. 107 (1989), 731-741.
  3. A. J. Duran, Laguerre expansions of tempered distributions and generalized functions, J. Math. Anal. Appl. 150 (1990), 166-180.
  4. A. Erdélyi (ed.), Tables of Integral Transforms, Vol. 1, McGraw-Hill, New York 1953.
  5. A. Erdélyi (ed.), Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York 1953.
  6. I. M. Gel'fand et G. E. Shilov, Les distributions, Vol. 2, Dunod, Paris 1964.
  7. G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ. 23, New York 1959.
Pages:
169-181
Main language of publication
English
Published
1991
Exact and natural sciences