ArticleOriginal scientific text

Title

Almost everywhere summability of Laguerre series

Authors 1

Affiliations

  1. Institute of Mathematics, Wrocław University, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

Abstract

We apply a construction of generalized twisted convolution to investigate almost everywhere summability of expansions with respect to the orthonormal system of functions na(x)=(n!Γ(n+a+1))12e-x2Lna(x), n = 0,1,2,..., in L2(+,xadx), a ≥ 0. We prove that the Cesàro means of order δ > a + 2/3 of any function fLp(xadx), 1 ≤ p ≤ ∞, converge to f a.e. The main tool we use is a Hardy-Littlewood type maximal operator associated with a generalized Euclidean convolution.

Keywords

Laguerre expansions, generalized twisted convolution, Riesz, Cesàro and Abel-Poisson means

Bibliography

  1. R. Askey and I. I. Hirschman, Jr., Mean summability for ultraspherical polynomials, Math. Scand. 12 (1963), 167-177.
  2. R. Askey and S. Wainger, Mean convergence of expansions in Laguerre and Hermite series, Amer. J. Math. 87 (1965), 695-708.
  3. C. P. Calderón, On Abel summability of multiple Laguerre series, Studia Math. 33 (1969), 273-294.
  4. R. Coifman et G. Weiss, Analyse harmonique non commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer, Berlin 1971.
  5. J. Długosz, Almost everywhere convergence of some summability methods for Laguerre series, Studia Math. 82 (1985), 199-209.
  6. G. Freud and S. Knapowski, On linear processes of approximation (III), ibid. 25 (1965), 373-383.
  7. E. Görlich and C. Markett, Mean Cesàro summability and operator norms for Laguerre expansions, Comment. Math., Tomus specialis II (1979), 139-148.
  8. E. Görlich and C. Markett, A convolution structure for Laguerre series, Indag. Math. 44 (1982), 161-171.
  9. C. Markett, Norm estimates for Cesàro means of Laguerre expansions, in: Approximation and Function Spaces (Proc. Conf. Gdańsk 1979), North-Holland, Amsterdam 1981, 419-435.
  10. C. Markett, Mean Cesàro summability of Laguerre expansions and norm estimates with shifted parameter, Anal. Math. 8 (1982), 19-37.
  11. C. Markett, Norm estimates for generalized translation operators associated with a singular differential operator, Indag. Math. 46 (1984), 299-313.
  12. B. Muckenhoupt, Poisson integrals for Hermite and Laguerre expansions, Trans. Amer. Math. Soc. 139 (1969), 231-242.
  13. B. Muckenhoupt, Mean convergence of Hermite and Laguerre series. II, ibid. 147 (1970), 433-460.
  14. J. Peetre, The Weyl transform and Laguerre polynomials, Le Matematiche 27 (1972), 301-323.
  15. E. L. Poiani, Mean Cesàro summability of Laguerre and Hermite series, Trans. Amer. Math. Soc. 173 (1972), 1-31.
  16. H. Pollard, The mean convergence of orthogonal series. II, ibid. 63 (1948), 355-367.
  17. K. Stempak, An algebra associated with the generalized sublaplacian, Studia Math. 88 (1988), 245-256.
  18. K. Stempak, Mean summability methods for Laguerre series, Trans. Amer. Math. Soc. 322 (1990), 671-690.
  19. S. Thangavelu, Multipliers for the Weyl transform and Laguerre expansions, Proc. Indian Acad. Sci. 100 (1990), 9-20.
  20. S. Thangavelu, On almost everywhere and mean convergence of Hermite and Laguerre expansions, Colloq. Math. 60/61 (1990), 21-34.
  21. G. N. Watson, Another note on Laguerre polynomials, J. London Math. Soc. 14 (1939), 19-22.
Pages:
129-147
Main language of publication
English
Received
1990-08-27
Accepted
1991-02-21
Published
1991
Exact and natural sciences