ArticleOriginal scientific text

Title

On the principle of local reflexivity

Authors 1

Affiliations

  1. Institut für Mathematik I, Freie Universität Berlin, Arnimallee 2-6, 1000 Berlin 33, Germany

Abstract

We prove a version of the local reflexivity theorem which is, in a sense, the most general one: our main theorem characterizes the conditions which can be imposed additionally on the usual local reflexivity map provided that these conditions are of a certain general type. It is then shown how known and new local reflexivity theorems can be derived. In particular, the compatibility of the local reflexivity map with subspaces and operators is investigated.

Bibliography

  1. E. Behrends, M-Structure and the Banach-Stone Theorem, Lecture Notes in Math. 736, Springer, 1979.
  2. E. Behrends, A generalization of the principle of local reflexivity, Rev. Roumaine Math. Pures Appl. 31 (1986), 293-296.
  3. E. Behrends, A simple proof of the principle of local reflexivity, preprint, 1989.
  4. S. F. Bellenot, Local reflexivity of normed spaces, J. Funct. Anal. 59 (1984), 1-11.
  5. S. J. Bernau, A unified approach to the principle of local reflexivity, in: Notes in Banach Spaces, Austin 1975-79, H. E. Lacey (ed.), Univ. Texas Press, Austin, Tex., 1980, 427-439.
  6. D. W. Dean, The equation L(E,X**) = L(E,X)** and the principle of local reflexivity, Proc. Amer. Math. Soc. 40 (1973), 146-148.
  7. P. Domański, Operator form of the principle of local reflexivity, preprint, 1988.
  8. P. Domański, Principle of local reflexivity for operators and quojections, Arch. Math. (Basel) 54 (1990), 567-575.
  9. V. A. Geĭler and I. I. Chuchaev, General principle of local reflexivity and its applications to the theory of duality of cones, Sibirsk. Mat. Zh. 23 (1) (1982), 32-43 (in Russian).
  10. H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart 1981.
  11. J. B. Johnson, H. P. Rosenthal and M. Zippin, On bases, finite dimensional decompositions and weaker structures in Banach space, Israel J. Math. 9 (1971), 488-506.
  12. K.-D. Kürsten, Lokale Reflexivität und lokale Dualität von Ultraprodukten für halbgeordnete Banachräume, Z. Anal. Anwendungen 3 (1984), 254-262.
  13. J. Lindenstrauss and H. P. Rosenthal, The p-spaces, Israel J. Math. 7 (1969), 325-349.
  14. Ch. Stegall, A proof of the principle of local reflexivity, Proc. Amer. Math. Soc. 78 (1980), 154-156.
Pages:
109-128
Main language of publication
English
Received
1990-08-10
Accepted
1990-12-27
Published
1991
Exact and natural sciences