ArticleOriginal scientific text
Title
Spaces of sequences, sampling theorem, and functions of exponential type
Authors 1
Affiliations
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, New York 10012, U.S.A.
Abstract
We introduce certain spaces of sequences which can be used to characterize spaces of functions of exponential type. We present a generalized version of the sampling theorem and a "nonorthogonal wavelet decomposition" for the elements of these spaces of sequences. In particular, we obtain a discrete version of the so-called φ-transform studied in [6] [8]. We also show how these new spaces and the corresponding decompositions can be used to study multiplier operators on Besov spaces.
Bibliography
- P. Ausscer and M. Carro, On the relations between operators on
, and , Studia Math., to appear. - R. Boas, Entire Functions, Academic Press, New York 1954.
- I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), 909-996.
- K. de Leeuw, On
multipliers, Ann. of Math. 81 (1965), 364-379. - H. Feichtinger and K. Gröchenig, Banach spaces related to intergrable group representations and their atomic decompositions, I, J. Funct. Anal. 86 (1989), 307-340.
- M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), 777-799.
- M. Frazier and B. Jawerth, The φ-transform and applications to distribution spaces, in: Function Spaces and Applications, M. Cwikel et al. (eds.), Lecture Notes in Math. 1302, Springer, 1988, 223-246.
- M. Frazier and B. Jawerth, A discrete transform and decomposition of distribution spaces. J. Funct. Anal., to appear.
- M. Frazier, B. Jawerth, and G. Weiss, Littlewood-Paley theory and the study of function spaces, CBMS Regional Conf. Ser. in Math., to appear.
- M. Frazier and R. Torres, The sampling theorem, φ-transform and Shannon wavelets for R, Z, T and
, preprint. - C. Heil and D. Walnut, Continuous and discrete wavelet transforms, SIAM Rev. 31 (1989), 628-666.
- M. Holschneider, Wavelet analysis on the circle, J. Math. Phys. 31 (1990), 39-44.
- Y. Katznelson, An Introduction to Harmonic Analysis, Dover, New York 1976.
- S. Mallat, Multiresolution representations and wavelets, Ph.D. Thesis, Electrical Engineering Department, Univ. of Pennsylvania, 1988.
- Y. Meyer, Wavelets and operators, Proc. of the Special Year in Modern Analysis at the University of Illinois, London Math. Soc. Lecture Note Ser. 137, Cambridge Univ. Press, Cambridge 1989, 256-364.
- Y. Meyer, Ondelettes et opérateurs, Hermann, Paris 1990.
- C. Onneweer and S. Weiyi, Homogeneous Besov spaces on locally compact Vilenkin groups, Studia Math. 93 (1989), 17-39.
- J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Ser. 1, Durham, N.C., 1976.
- V. Peller, Wiener-Hopf operators on a finite interval and Schatten-von Neumann classes, Proc. Amer. Math. Soc. 104 (1988), 479-486.
- B. Petersen, Introduction to the Fourier Transform and Pseudo-differential Operators, Pitman, Boston 1983.
- R. Rochberg, Toeplitz and Hankel operators on the Paley-Wiener spaces, Integral Equations Operator Theory 10, (1987), 187-235.
- E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.
- R. Torres, Boundedness results for operators with singular kernels on distribution spaces, Mem. Amer. Math. Soc. 442 (1991).
- H. Triebel, Theory of Function Spaces, Monographs Math. 78, Birkhäuser, Basel 1983.
- A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, London 1968.