ArticleOriginal scientific text

Title

A multiplier theorem for H-type groups

Authors 1

Affiliations

  1. Dipartimento di Matematica, Universitá di Verona, Via dell'Artigliere 19, 37129 Verona, Italy

Abstract

We prove an Lp-boundedness result for a convolution operator with rough kernel supported on a hyperplane of a group of Heisenberg type.

Bibliography

  1. J. Bergh and J. Löfström, Interpolation Spaces, Springer, 1976.
  2. M. Christ, Hilbert transforms along curves. I. Nilpotent groups, Ann. of Math. 122 (1985), 575-596.
  3. R. R. Coifman and G. Weiss, Transference methods in harmonic analysis, CBMS Regional Conf. Ser. in Math. 31, Amer. Math. Soc., 1977.
  4. M. Cowling, A remark on twisted convolution, Suppl. Rend. Circ. Mat. Palermo 1 (1981). 203 209
  5. J. Cygan, Subadditivity of homogeneous norms on certain nilpotent Lie groups, Proc. Amer. Math. Soc. 83 (1981), 69-70.
  6. I. M. Gelfand and G. E. Shilov, Generalized Function I, Academic Press, 1964.
  7. D. Geller and E. M. Stein, Estimates for singular convolution operators on the Heisenberg group, Math. Ann. 267 (1984), 1-15.
  8. R. Goodman, Singular integral operators on nilpotent Lie groups, Ark. Mat. 18 (1980), 1-11.
  9. K. Hoffman and R. Kunze, Linear Algebra, Prentice-Hall, 1961.
  10. R. Howe, Quantum mechanics and partial differential operators, J. Funct. Anal. 38 (1980), 188-254.
  11. A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc. 258 (1980), 147-153.
  12. A. Kaplan and F. Ricci, Harmonic analysis on groups of Heisenberg type, in: Lecture Notes in Math. 992, Springer, 1983, 416-435.
  13. D. Müller, Calderón-Zygmund kernels carried by linear subspaces of homogeneous nilpotent Lie algebras, invent. Math. 73 (1983), 467-489.
  14. D. Müller, Singular kernels supported by homogeneous submanifolds, J. Reine Angew. Math. 356 (1985), 90-118.
  15. F. Ricci, Calderón-Zygmund kernels on nilpotent Lie groups, in: Lecture Notes in Math. 908, Springer, 1982, 217-227.
  16. F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals, J. Funct. Anal. 73 (1987), 179-194.
  17. F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals. II. Singular kernels supported on submanifolds, ibid. 78 (1988), 56-84.
  18. F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups. III. Fractional integration along manifolds, ibid. 86 (1989), 360-389.
  19. E. M. Stein and S. Wainger, Problems In harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), 1239-1295.
  20. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton 1975.
  21. R. Strichartz, Singular integrals on nilpotent Lie groups, Proc. Amer. Math. Soc. 53 (1975), 367-374.
Pages:
39-49
Main language of publication
English
Received
1990-07-05
Accepted
1990-12-03
Published
1991
Exact and natural sciences