ArticleOriginal scientific text

Title

Vitali sets and Hamel bases that are Marczewski measurable

Authors 1, 2, 3

Affiliations

  1. Department of Mathematics, University of Wisconsin-Madison, Van Vleck Hall, 480 Lincoln Drive, Madison, WI 53706-1388, U.S.A.
  2. Institute of Mathematics, Bulgarian Academy of Sciences, Acad. G. Bontchev street, bl. 8, 1113 Sofia, Bulgaria
  3. Department of Mathematics, Auburn University, 218 Parker Hall, Auburn, AL 36849-5310, U.S.A.

Abstract

We give examples of a Vitali set and a Hamel basis which are Marczewski measurable and perfectly dense. The Vitali set example answers a question posed by Jack Brown. We also show there is a Marczewski null Hamel basis for the reals, although a Vitali set cannot be Marczewski null. The proof of the existence of a Marczewski null Hamel basis for the plane is easier than for the reals and we give it first. We show that there is no easy way to get a Marczewski null Hamel basis for the reals from one for the plane by showing that there is no one-to-one additive Borel map from the plane to the reals.

Bibliography

  1. C.Burstin, Die Spaltung des Kontinuums in in Lebesgueschem Sinne nichtmessbare Mengen, Sitzungsber. Akad. Wiss. Wien Math. Nat. Klasse Abt. IIa 125 (1916), 209-217.
  2. P.Erdős, On some properties of Hamel bases, Colloq. Math. 10 (1963), 267-269.
  3. J.Feldman and C. C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras I, Trans. Amer. Math. Soc. 234 (1977), 289-324.
  4. F. B.Jones, Measure and other properties of a Hamel basis, Bull. Amer. Math. Soc. 48 (1942), 472-481.
  5. A. S.Kechris, Classical Descriptive Set Theory, Grad. Texts in Math. 156, Springer, 1995.
  6. M.Kuczma, An introduction to the theory of functional equations and inequalities. Cauchy's equation and Jensen's inequality, Prace Nauk. Uniw. Śląsk. 489, Uniw. Śląski, Katowice, and PWN, Warszawa, 1985.
  7. A. W.Miller, Special subsets of the real line, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), Elsevier, 1984, 201-233.
  8. W.Sierpiński, Sur la question de la mesurabilité de la base de Hamel, Fund. Math. 1 (1920), 105-111.
  9. J. H.Silver, Counting the number of equivalence classes of Borel and coanalytic equivalence relations, Ann. Math. Logic 18 (1980), 1-28.
  10. E.Szpilrajn (Marczewski), Sur une classe de fonctions de M. Sierpiński et la classe correspondante d'ensembles, Fund. Math. 24 (1935), 17-34.
Pages:
269-279
Main language of publication
English
Received
1999-12-24
Accepted
2000-08-24
Published
2000
Exact and natural sciences