ArticleOriginal scientific text
Title
A dichotomy for P-ideals of countable sets
Authors 1
Affiliations
- Université Paris 7, C.N.R.S., UPRESA 7056, 2, Place Jussieu, 72251 Paris Cedex 05, France
Abstract
A dichotomy concerning ideals of countable subsets of some set is introduced and proved compatible with the Continuum Hypothesis. The dichotomy has influence not only on the Suslin Hypothesis or the structure of Hausdorff gaps in the quotient algebra /fin but also on some higher order statements like for example the existence of Jensen square sequences.
Bibliography
- U. Abraham and S. Todorčević, Partition properties of
compatible with CH, Fund. Math. 152 (1997), 165-181. - K. J. Devlin, The Yorkshireman's guide to proper forcing, in: Surveys in Set Theory, A. R. D. Mathias (ed.), Cambridge Univ. Press, 1983, 60-105.
- F. Hausdorff, Summen von
Mengen, Fund. Math. 26 (1936), 241-255. - J. Hirschorn, Random trees under CH, preprint, 1999.
- R. B. Jensen, The fine structure of the constructible hierarchy, Ann. Math. Logic 4 (1972), 229-308.
- R. Laver, Making supercompactness indestructible under κ-directed forcing, Israel J. Math. 29 (1978), 385-388.
- S. Shelah, Proper Forcing, Springer, 1982.
- S. Todorčević, Trees and linearly ordered sets, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, 1984, 235-293.
- S. Todorčević, Partitioning pairs of countable ordinals, Acta Math. 159 (1987), 261-294.
- S. Todorčević, Partition Problems in Topology, Amer. Math. Soc., Providence, 1989.
- S. Todorčević, Some applications of S and L combinatorics, Ann. New York Acad. Sci. 705 (1993), 130-167.