Download PDF - Generalized Whitney partitions
ArticleOriginal scientific text
Title
Generalized Whitney partitions
Authors 1
Affiliations
- Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-950 Warszawa, Poland
Abstract
We prove that the upper Minkowski dimension of a compact set Λ is equal to the convergence exponent of any packing of the complement of Λ with polyhedra of size not smaller than a constant multiple of their distance from Λ.
Bibliography
- C. Bishop, Minkowski dimension and the Poincaré exponent, Michigan Math. J. 43 (1996), 231-246.
- C. Bishop, Geometric exponents and Kleinian groups, Invent. Math. 127 (1997), 33-50.
- L. Carleson, P. W. Jones and J. C. Yoccoz, Julia and John, Bol. Soc. Brasil. Mat. 25 (1994), 1-30.
- K. Falconer, Fractal Geometry. Mathematical Foundations and Applications, Wiley, Chichester, 1990.
- O. Martio and M. Vuorinen, Whitney cubes, p-capacity and Minkowski content, Exposition. Math. 5 (1987), 17-40.
- P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Univ. Press, Cambridge, 1995.
- P. J.Nicholls, The Ergodic Theory of Discrete Groups, Cambridge Univ. Press, Cambridge, 1989.
- C. Pommerenke, Boundary Behaviour of Conformal Maps, Springer, Heidelberg, 1992.
- M. Rams, Box dimension and self-intersecting Cantor sets, doctoral thesis, IM PAN, 1999 (in Polish).
- E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970.
- C. Tricot, Porous surfaces, Constr. Approx. 5 (1989), 117-136.
- C. Tricot, Curves and Fractal Dimension, Springer, Berlin, 1995.
- C. Tricot, Mesures et dimensions, doctoral thesis, Univ. Paris-Sud, 1983.