ArticleOriginal scientific text

Title

Cellularity of free products of Boolean algebras (or topologies)

Authors 1, 2

Affiliations

  1. Institute of Mathematics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
  2. Department of Mathematics, Rutgers University, New Brunswick, NJ 08854, U.S.A.

Abstract

The aim this paper is to present an answer to Problem 1 of Monk [10], [11]. We do this by proving in particular that if μ is a strong limit singular cardinal, θ=(2cf(μ))+ and 2μ=μ+ then there are Boolean algebras B1,B2 such that c(B1)=μ,c(B2)<θbutc(B1B2)=μ+. Further we improve this result, deal with the method and the necessity of the assumptions. In particular we prove that if B is a ccc Boolean algebra and μωλ=cf(λ)2μ then B satisfies the λ-Knaster condition (using the "revised GCH theorem").

Keywords

set theory, pcf, Boolean algebras, cellularity, product, colourings

Bibliography

  1. M. Džamonja and S. Shelah, Universal graphs at successors of singular strong limits.
  2. R. Engelking and M. Karłowicz, Some theorems of set theory and their topological consequences, Fund. Math. 57 (1965), 275-285.
  3. M. Gitik and S. Shelah, On densities of free products, Topology Appl. 88 (1998), 219-238.
  4. A. Hajnal, I. Juhász and S. Shelah, Splitting strongly almost disjoint families, Trans. Amer. Math. Soc. 295 (1986), 369-387.
  5. A. Hajnal, I. Juhász and Z. Szentmiklóssy, On the structure of CCC partial orders, Algebra Universalis, to appear.
  6. R. B. Jensen, The fine structure of the constructible hierarchy, Ann. Math. Logic 4 (1972), 229-308.
  7. A. Kanamori and M. Magidor, The evolution of large cardinal axioms in set theory, in: Higher Set Theory, Lecture Notes in Math. 669, Springer, 1978, 99-275.
  8. J. P. Levinski, M. Magidor and S. Shelah, Chang's conjecture for ω, Israel J. Math. 69 (1990), 161-172.
  9. M. Magidor and S. Shelah, When does almost free imply free? (For groups, transversal etc.), J. Amer. Math. Soc. 7 (1994), 769-830.
  10. D. Monk, Cardinal Invariants of Boolean Algebras, Lectures in Mathematics, ETH Zurich, Birkhäuser, Basel, 1990.
  11. D. Monk, Cardinal Invariants of Boolean Algebras, Progr. Math., Birkhäuser, Basel, 1996.
  12. S. Shelah, Categoricity of an abstract elementary class in two successive cardinals, Israel J. Math. accepted;. math.LO/9805146.
  13. S. Shelah, PCF and infinite free subsets, Arch. Math. Logic, accepted; math.LO/9807177.
  14. S. Shelah, Remarks on Boolean algebras, Algebra Universalis 11 (1980), 77-89.
  15. S. Shelah, Simple unstable theories, Ann. Math. Logic 19 (1980), 177-203.
  16. S. Shelah, On saturation for a predicate, Notre Dame J. Formal Logic 22 (1981), 239-248.
  17. S. Shelah, Products of regular cardinals and cardinal invariants of products of Boolean algebras, Israel J. Math. 70 (1990), 129-187.
  18. S. Shelah, Advances in Cardinal Arithmetic, in: Finite and Infinite Combinatorics in Sets and Logic, N. W. Sauer et al. (eds.), Kluwer, 1993, 355-383.
  19. S. Shelah, More on cardinal arithmetic, Arch. Math. Logic 32 (1993), 399-428.
  20. S. Shelah, ω+1 has a Jonsson algebra, Chapter II of [20].
  21. S. Shelah, Basic: Cofinalities of small reduced products, Chapter I of [20].
  22. S. Shelah, Cardinal Arithmetic, Oxford Logic Guides 29, Oxford Univ. Press, 1994.
  23. S. Shelah, Further cardinal arithmetic, Israel J. Math. 95 (1996), 61-114; math. LO/9610226.
  24. S. Shelah, Colouring and non-productivity of 2-cc, Ann. Pure Appl. Logic 84 (1997), 153-174; math.LO/9609218.
  25. S. Shelah, The Generalized Continuum Hypothesis revisited, Israel J. Math. 116 (2000), 285-321; math.LO/9809200.
  26. R. M.Solovay, Strongly compact cardinals and the GCH, in: Proc. Tarski Symposium (Berkeley, 1971), Proc. Sympos. Pure Math. 25, Amer. Math. Soc., 1974, 365-372.
Pages:
153-208
Main language of publication
English
Received
1996-09-02
Accepted
1999-08-09
Published
2000
Exact and natural sciences