PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | 165 | 3 | 258-290
Tytuł artykułu

A note on strong compactness and resurrectibility

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We construct a model containing a proper class of strongly compact cardinals in which no strongly compact cardinal ĸ is $ĸ^+$ supercompact and in which every strongly compact cardinal has its strong compactness resurrectible.
Rocznik
Tom
165
Numer
3
Strony
258-290
Opis fizyczny
Daty
wydano
2000
otrzymano
2000-02-01
Twórcy
Bibliografia
  • [1] A. Apter, Aspects of strong compactness, measurability, and indestructibility, Arch. Math. Logic, submitted.
  • [2] A. Apter, Laver indestructibility and the class of compact cardinals, J. Symbolic Logic 63 (1998) 149-157.
  • [3] A. Apter, Patterns of compact cardinals, Ann. Pure Appl. Logic 89 (1997), 101-115.
  • [4] A. Apter and M. Gitik, The least measurable can be strongly compact and indestructible, J. Symbolic Logic 63 (1998), 1404-1412.
  • [5] A. Apter and J. D. Hamkins, Universal indestructibility, Kobe J. Math. 16 (1999), 119-130.
  • [6] A. Apter and S. Shelah, Menas' result is best possible, Trans. Amer. Math. Soc. 349 (1997), 2007-2034.
  • [7] J. Cummings, A model in which GCH holds at successors but fails at limits, ibid. 329 (1992), 1-39.
  • [8] J. D. Hamkins, Destruction or preservation as you like it, Ann. Pure Appl. Logic 91 (1998), 191-229.
  • [9] J. D. Hamkins, Gap forcing, Israel J. Math., to appear.
  • [10] J. D. Hamkins, Gap forcing: generalizing the Lévy-Solovay theorem, Bull. Symbolic Logic 5 (1999), 264-272.
  • [11] J. D. Hamkins, Small forcing makes any cardinal superdestructible, J. Symbolic Logic 63 (1998), 51-58
  • [12] J. D. Hamkins, The lottery preparation, Ann. Pure Appl. Logic 101 (2000), 103-146.
  • [13] R. Laver, Making the supercompactness of κ indestructible under κ -directed closed forcing, Israel J. Math. 29 (1978), 385-388.
  • [14] A. Lévy and R. Solovay, Measurable cardinals and the continuum hypothesis, ibid. 5 (1967), 234-248.
  • [15] T. Menas, On strong compactness and supercompactness, Ann. Math. Logic 7 (1974), 327-359.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-fmv165i3p258bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.