ArticleOriginal scientific text

Title

Trajectory of the turning point is dense for a co-σ-porous set of tent maps

Authors 1, 2

Affiliations

  1. Department of Mathematical Sciences, University of Wisconsin at Milwaukee, Milwaukee, WI 53201, U.S.A.
  2. Department of Analysis, Eötvös Loránd University, Múzeum krt. 6-8, H-1088 Budapest, Hungary

Abstract

It is known that for almost every (with respect to Lebesgue measure) a ∈ [√2,2] the forward trajectory of the turning point of the tent map Ta with slope a is dense in the interval of transitivity of Ta. We prove that the complement of this set of parameters of full measure is σ-porous.

Bibliography

  1. L. Block and W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Math. 1513, Springer, New York, 1992.
  2. K. Brucks, B. Diamond, M. V. Otero-Espinar and C. Tresser, Dense orbits of critical points for the tent map, in: Contemp. Math. 117, Amer. Math. Soc., 1991, 57-61.
  3. K. Brucks and M. Misiurewicz, The trajectory of the turning point is dense for almost all tent maps, Ergodic Theory Dynam. Systems 16 (1996), 1173-1183.
  4. H. Bruin, Invariant measures of interval maps, Ph.D. thesis, Delft, 1994.
  5. H. Bruin, Combinatorics of the kneading map, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 5 (1995), 1339-1349.
  6. H. Bruin, Quasi-symmetry of conjugacies between interval maps, Nonlinearity 9 (1996), 1191-1207.
  7. H. Bruin, Topological conditions for the existence of absorbing Cantor sets, Trans. Amer. Math. Soc. 350 (1998), 2229-2263.
  8. H. Bruin, For almost every tent map, the turning point is typical, Fund. Math. 155 (1998), 215-235.
  9. F. Hofbauer, The topological entropy of the transformation x ↦ ax(1-x), Monatsh. Math. 90 (1980), 117-141.
  10. F. Hofbauer and G. Keller, Quadratic maps without asymptotic measure, Comm. Math. Phys. 127 (1990), 319-337.
  11. W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer, New York, 1993.
  12. D. Preiss and L. Zajíček, Fréchet differentiation of convex functions in a Banach space with a separable dual, Proc. Amer. Math. Soc. 91 (1984), 202-204.
  13. D. L. Renfro, On some various porosity notions, preprint, 1995.
  14. D. Sands, Topological conditions for positive Lyapunov exponent in unimodal maps, Ph.D. thesis, Cambridge, 1994.
  15. S. van Strien, Smooth dynamics on the interval, in: New Directions in Dynamical Systems, London Math. Soc. Lecture Note Ser. 127, Cambridge Univ. Press, Cambridge, 1988, 57-119.
  16. B. S. Thomson, Real Functions, Lecture Notes in Math. 1170, Springer, New York, 1985.
  17. L. Zajíček, Porosity and σ-porosity, Real Anal. Exchange 13 (1987-88), 314-347.
Pages:
95-123
Main language of publication
English
Received
1998-07-10
Published
2000
Exact and natural sciences