ArticleOriginal scientific text

Title

Inverse limit spaces of post-critically finite tent maps

Authors 1

Affiliations

  1. Mathematics 253-37, California Institute of Technology, Pasadena, CA 91125, U.S.A.

Abstract

Let (I,T) be the inverse limit space of a post-critically finite tent map. Conditions are given under which these inverse limit spaces are pairwise nonhomeomorphic. This extends results of Barge & Diamond [2].

Keywords

inverse limit space, interval map

Bibliography

  1. C. Bandt, Composants of the horseshoe, Fund. Math.144 (1994), 231-241.
  2. M. Barge and B. Diamond, Homeomorphisms of inverse limit spaces of one-dimensional maps, ibid.146 (1995), 171-187.
  3. M. Barge and S. Holte, Nearly one-dimensional Hénon attractors and inverse limits, Nonlinearity8 (1995), 29-42.
  4. M. Barge and W. Ingram, Inverse limits on [0,1] using logistic bonding maps, Topology Appl.72 (1996), 159-172.
  5. M. Barge and J. Martin, Endpoints of inverse limit spaces and dynamics, in: Continua with the Houston Problem Book, Lecture Notes in Pure and Appl. Math. 170, Marcel Dekker, New York, 1995, 165-182.
  6. K. Brucks and B. Diamond, A symbolic representation of inverse limit spaces for a class of unimodal maps, ibid., 207-226.
  7. H. Bruin, Planar embeddings of inverse limit spaces of unimodal maps, Topology Applications96 (1999), 191-208.
  8. A. Douady et J. Hubbard, Étude dynamique des polynômes complexes, partie I, Publ. Math. Orsay 85-04, 1984.
  9. F. Durand, A generalization of Cobham's Theorem, Theory Comput. Syst.31 (1998), 169-185.
  10. R. J. Fokkink, The structure of trajectories, Ph.D. thesis, Delft, 1992.
  11. L. Kailhofer, A partial classification of inverse limit spaces of tent maps with periodic critical points, Ph.D. thesis, Milwaukee, 1999.
  12. B. Mossé, Puissances de mots et reconnaissabilité des points fixes d'une substitution, Theoret. Comput. Sci.99 (1992), 327-334.
  13. S. Nadler, Continuum Theory, Marcel Dekker, New York, 1992.
  14. M. Queffélec, Substitution Dynamical Systems. Spectral Analysis, Lecture Notes in Math.1294, Springer, 1987.
  15. R. Swanson and H. Volkmer, Invariants of weak equivalence in primitive matrices, Ergodic Theory Dynam. Systems 20 (2000), 611-616.
  16. W. Watkins, Homeomorphic classification of certain inverse limit spaces with open bonding maps, Pacific J. Math.103 (1982), 589-601.
Pages:
125-138
Main language of publication
English
Received
1999-03-23
Published
2000
Exact and natural sciences