ArticleOriginal scientific text

Title

Weakly α-favourable measure spaces

Authors 1

Affiliations

  1. Mathematics Department, University of Essex, Colchester CO4 3SQ, England

Abstract

I discuss the properties of α-favourable and weakly α-favourable measure spaces, with remarks on their relations with other classes.

Bibliography

  1. A. Bellow and D. Kölzow (eds.), Measure Theory (Oberwolfach, 1975), Lecture Notes in Math. 541, Springer, 1976.
  2. J. R. Choksi and D. H. Fremlin, Completion regular measures on product spaces, Math. Ann. 241 (1979), 113-128.
  3. G. Choquet, Lectures in Analysis, Vol. I, Benjamin, 1969.
  4. G. Debs, Stratégies gagnantes dans certains jeux topologiques, Fund. Math. 126 (1985), 93-105.
  5. M. Dekiert, Two results for monocompact measures, Manuscripta Math. 80 (1993), 339-346.
  6. P. Erdős, A. Hajnal, A. Máté and R. Rado, tCombinatorial Set Theory: Partition Relations for Cardinals, Akadémiai Kiadó, 1984.
  7. D. H. Fremlin, Consequences of Martin's Axiom, Cambridge Univ. Press, 1984.
  8. D. H. Fremlin, Measure-additive coverings and measurable selectors, Dissertationes Math. 260 (1987).
  9. D. H. Fremlin, Measure algebras, pp. 876-980 in [15].
  10. D. H. Fremlin, Measure Theory, in preparation. Drafts available by anonymous ftp from ftp.essex.ac.uk/pub/measuretheory.
  11. F. Galvin and R. Telgársky, Stationary strategies in topological games, Topology Appl. 22 (1986), 51-69.
  12. T. Jech, Set Theory, Academic Press, 1978.
  13. S. Koppelberg, General Theory of Boolean Algebras, Vol. 1 of [15].
  14. E. Marczewski, On compact measures, Fund. Math. 40 (1953), 113-124.
  15. J. D. Monk (ed.), Handbook of Boolean Algebras, North-Holland, 1989.
  16. K. Musiał, Inheritness of compactness and perfectness of measures by thick subsets, pp. 31-42 in [1].
  17. J. K. Pachl, Two classes of measures, Colloq. Math. 42 (1979), 331-340.
  18. D. Ross, Compact measures have Loeb preimages, Proc. Amer. Math. Soc. 115 (1992), 365-370.
  19. C. Ryll-Nardzewski, On quasi-compact measures, Fund. Math. 40 (1953), 125-130.
  20. V. V. Sazonov, On perfect measures, Amer. Math. Soc. Transl. (2) 48 (1966), 229-254.
  21. S. Shelah, Strong negative partition above the continuum, J. Symbolic Logic 55 (1990), 21-31.
  22. S. Shelah, Strong negative partition relations below the continuum, Acta Math. Hungar. 58 (1991), 95-100.
  23. S. Todorčević, Partitioning pairs of countable ordinals, Acta Math. 159 (1987), 261-294.
  24. F. Topsøe, Approximating pavings and construction of measures, Colloq. Math. 42 (1979), 377-385.
Pages:
67-94
Main language of publication
English
Received
1999-10-28
Accepted
2000-02-07
Published
2000
Exact and natural sciences