ArticleOriginal scientific text
Title
Weakly α-favourable measure spaces
Authors 1
Affiliations
- Mathematics Department, University of Essex, Colchester CO4 3SQ, England
Abstract
I discuss the properties of α-favourable and weakly α-favourable measure spaces, with remarks on their relations with other classes.
Bibliography
- A. Bellow and D. Kölzow (eds.), Measure Theory (Oberwolfach, 1975), Lecture Notes in Math. 541, Springer, 1976.
- J. R. Choksi and D. H. Fremlin, Completion regular measures on product spaces, Math. Ann. 241 (1979), 113-128.
- G. Choquet, Lectures in Analysis, Vol. I, Benjamin, 1969.
- G. Debs, Stratégies gagnantes dans certains jeux topologiques, Fund. Math. 126 (1985), 93-105.
- M. Dekiert, Two results for monocompact measures, Manuscripta Math. 80 (1993), 339-346.
- P. Erdős, A. Hajnal, A. Máté and R. Rado, tCombinatorial Set Theory: Partition Relations for Cardinals, Akadémiai Kiadó, 1984.
- D. H. Fremlin, Consequences of Martin's Axiom, Cambridge Univ. Press, 1984.
- D. H. Fremlin, Measure-additive coverings and measurable selectors, Dissertationes Math. 260 (1987).
- D. H. Fremlin, Measure algebras, pp. 876-980 in [15].
- D. H. Fremlin, Measure Theory, in preparation. Drafts available by anonymous ftp from ftp.essex.ac.uk/pub/measuretheory.
- F. Galvin and R. Telgársky, Stationary strategies in topological games, Topology Appl. 22 (1986), 51-69.
- T. Jech, Set Theory, Academic Press, 1978.
- S. Koppelberg, General Theory of Boolean Algebras, Vol. 1 of [15].
- E. Marczewski, On compact measures, Fund. Math. 40 (1953), 113-124.
- J. D. Monk (ed.), Handbook of Boolean Algebras, North-Holland, 1989.
- K. Musiał, Inheritness of compactness and perfectness of measures by thick subsets, pp. 31-42 in [1].
- J. K. Pachl, Two classes of measures, Colloq. Math. 42 (1979), 331-340.
- D. Ross, Compact measures have Loeb preimages, Proc. Amer. Math. Soc. 115 (1992), 365-370.
- C. Ryll-Nardzewski, On quasi-compact measures, Fund. Math. 40 (1953), 125-130.
- V. V. Sazonov, On perfect measures, Amer. Math. Soc. Transl. (2) 48 (1966), 229-254.
- S. Shelah, Strong negative partition above the continuum, J. Symbolic Logic 55 (1990), 21-31.
- S. Shelah, Strong negative partition relations below the continuum, Acta Math. Hungar. 58 (1991), 95-100.
- S. Todorčević, Partitioning pairs of countable ordinals, Acta Math. 159 (1987), 261-294.
- F. Topsøe, Approximating pavings and construction of measures, Colloq. Math. 42 (1979), 377-385.