ArticleOriginal scientific text

Title

On the generalized Massey–Rolfsen invariant for link maps

Authors 1

Affiliations

  1. Department of Differential Geometry, Faculty of Mechanics and Mathematics, Moscow State University, Moscow, Russia 119899

Abstract

For K=K1...Ks and a link map f:Km let K=i<jKi×Kj, define a map f:KSm-1 by f(x,y)=fx-fy|fx-fy| and a (generalized) Massey-Rolfsen invariant α(f)πm-1(K) to be the homotopy class of f. We prove that for a polyhedron K of dimension ≤ m - 2 under certain (weakened metastable) dimension restrictions, α is an onto or a 1 - 1 map from the set of link maps f:Km up to link concordance to πm-1(K). If K1,...,Ks are closed highly homologically connected manifolds of dimension p1,...,ps (in particular, homology spheres), then πm-1(K)i<jπS_{pi+pj-m+1}.

Keywords

deleted product, Massey-Rolfsen invariant, link maps, link homotopy, stable homotopy group, double suspension, codimension two, highly connected manifolds

Bibliography

  1. [Ca 86] A. Casson, Three lectures on new infinite constructions in 4-dimensional manifolds, in: A la Recherche de la Topologie Perdue, L. Guillou and A. Marin (eds.), Progr. Math. 62, Birkhäuser, Boston, 1986, 201-244.
  2. [DRS 91] A. N. Dranishnikov, D. Repovš and E. V. Shchepin, On intersections of compacta of complementary dimensions in Euclidean space, Topology Appl. 38 (1991), 237-253.
  3. [HK 98] N. Habegger and U. Kaiser, Link homotopy in 2-metastable range, Topology 37 (1998), 75-94.
  4. [Ha 69] L. S. Harris, Intersections and embeddings of polyhedra, ibid. 8 (1969), 1-26.
  5. [Ja 54] I. James, On the iterated suspension, Quart. J. Math. Oxford 5 (1954), 1-10.
  6. [Ke 59] M. Kervaire, An interpretation of G. Whitehead's generalization of H. Hopf's invariant, Ann. of Math. 62 (1959), 345-362.
  7. [Ki 90] P. Kirk, Link homotopy with one codimension-two component, Trans. Amer. Math. Soc. 319 (1990), 663-688.
  8. [Ko 88] U. Koschorke, Link maps and the geometry of their invariants, Manuscripta Math. 61 (1988), 383-415.
  9. [Ko 90] U. Koschorke, On link maps and their homotopy classification, Math. Ann. 286 (1990), 753-782.
  10. [Ko 92] U. Koschorke, Homotopy, concordance and bordism of link maps, preprint, Univ. of Siegen, 1992.
  11. [Ma 90] W. Massey, Homotopy classification of 3-component links of codimension greater than 2, Topology Appl. 34 (1990), 269-300.
  12. [MR 86] W. Massey and D. Rolfsen, Homotopy classification of higher dimensional links, Indiana Univ. Math. J. 34 (1986), 375-391.
  13. [Me] S. Melikhov, Singular link concordance implies link homotopy in codimension ≥ 3, submitted.
  14. [Mi 54] J. Milnor, Link groups, Ann. of Math. 59 (1954), 177-195.
  15. [MT 68] R. E. Mosher and M. C. Tangora, Cohomology Operations and Applications in Homotopy Theory, Harper and Row, New York, 1968.
  16. [Ne 98] V. M. Nezhinskiĭ, An analogue of the Milnor group of a link in the theory of multidimensional links, Zap. Nauchn. Sem. POMI 252 (1998), 175-190 (in Russian).
  17. [RS 96] D. Repovš and A. Skopenkov, Embeddability and isotopy of polyhedra in Euclidean spaces, Proc. Steklov Inst. Math. 212 (1996), 163-178.
  18. [RS 98] D. Repovš and A. Skopenkov, A deleted product criterion for approximability of maps by embeddings, Topology Appl. 87 (1998), 1-19.
  19. [RS 99] D. Repovš and A. Skopenkov, New results on embeddings of polyhedra and manifolds into Euclidean spaces, Uspekhi Mat. Nauk 54 (1999), no. 6, 61-109 (in Russian); English transl.: Russian Math. Surveys, to appear.
  20. [RS] D. Repovš and A. Skopenkov, On projected embeddings and desuspension of the α-invariant, submitted.
  21. [RS 72] C. P. Rourke and B. J. Sanderson, Introduction to Piecewise-Linear Topology, Ergeb. Math. Grenzgeb. 69, Springer, Berlin, 1972.
  22. [Sa 99] R. F. Sayakhova, Homotopy classification of singular links of type (1,...,1, m;3) with m > 1, Zap. Nauchn. Sem. POMI 261 (1999), 229-239 (in Russian).
  23. [Sc 68] G. P. Scott, Homotopy links, Abh. Math. Sem. Univ. Hamburg 32 (1968), 186-190.
  24. [SS 90] J. Segal and S. Spież, On transversely trivial maps, Questions Answers Gen. Topology 8 (1990), 91-100.
  25. [SS 92] J. Segal and S. Spież, Quasi-embeddings and embedding of polyhedra in m, Topology Appl. 45 (1992), 275-282.
  26. [SSS 98] J. Segal, A. Skopenkov and S. Spież, Embedding of polyhedra in m and the deleted product obstruction, Topology Appl. 85 (1998), 335-344.
  27. [Se 53] J. P. Serre, Groupes d'homotopie et classes de groupes abéliens, Ann. of Math. 58 (1953), 258-294.
  28. [Sk 97] A. Skopenkov, On the deleted product criterion for embeddability of manifolds in m, Comment. Math. Helv. 72 (1997), 543-555.
  29. [Sk 98] A. Skopenkov, On the deleted product criterion for embeddability in m, Proc. Amer. Math. Soc. 126 (1998), 2267-2276.
  30. [Sk] A. Skopenkov, On the Wu-Haefliger-Hirsch invariants of embeddings and immersions, submitted.
  31. [ST 91] S. Spież and H. Toruńczyk, Moving compacta in m apart, Topology Appl. 41 (1991), 193-204.
  32. [We 67] C. Weber, Plongements de polyèdres dans le domaine metastable, Comment. Math. Helv. 42 (1967), 1-27.
Pages:
1-15
Main language of publication
English
Received
1998-05-21
Accepted
1998-10-02
Published
2000
Exact and natural sciences