ArticleOriginal scientific text

Title

Knots in S2xS1 derived from Sym(2, ℝ)

Authors 1, 1, 2

Affiliations

  1. Department of Mathematics, College of Natural Sciences, Pusan National University, Pusan 609-735, Republic of Korea
  2. Department of Mathematics, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Republic of Korea

Abstract

We realize closed geodesics on the real conformal compactification of the space V = Sym(2, ℝ) of all 2 × 2 real symmetric matrices as knots or 2-component links in S2×S1 and show that these knots or links have certain types of symmetry of period 2.

Keywords

geodesic, symmetric matrix, Shilov boundary, 2-periodic knot

Bibliography

  1. W. Bertram, Un théorème de Liouville pour les algèbres de Jordan, Bull. Soc. Math. France 124 (1996), 299-327.
  2. J. Faraut and A. Korányi, Analysis on Symmetric Cones, Oxford Univ. Press, Oxford, 1994.
  3. R. H. Fox, Knots and periodic transformations, in: Topology of 3-Manifolds and Related Topics (Proc. Univ. of Georgia Institute, 1961), Prentice-Hall, 1962, 177-182.
  4. K. W. Kwun, Piecewise linear involutions of S1×S2, Michigan Math. J. 16 (1969), 93-96.
  5. S. Y. Lee, Y. Lim and C.-Y. Park, Symmetric geodesics on conformal compactifications of Euclidean Jordan algebras, Bull. Austral. Math. Soc. 59 (1999), 187-201.
  6. B. Makarevich, Ideal points of semisimple Jordan algebras, Mat. Zametki 15 (1974), 295-305 (in Russian).
  7. J. W. Morgan and H. Bass, The Smith Conjecture, Academic Press, 1984.
  8. D. Rolfsen, Knots and Links, Publish or Perish, 1976.
  9. P. A. Smith, Transformations of finite period II, Ann. of Math. 40 (1939), 690-711.
  10. Y. Tao, On fixed point free involutions of S1×S2, Osaka Math. J. 14 (1962), 145-152.
  11. J. L. Tollefson, Involutions on S1×S2 and other 3-manifolds Trans. Amer. Math. Soc. 183 (1973), 139-152.
Pages:
241-252
Main language of publication
English
Received
1999-08-23
Published
2000
Exact and natural sciences