ArticleOriginal scientific textKnots in
Title
Knots in derived from Sym(2, ℝ)
Authors 1, 1, 2
Affiliations
- Department of Mathematics, College of Natural Sciences, Pusan National University, Pusan 609-735, Republic of Korea
- Department of Mathematics, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Republic of Korea
Abstract
We realize closed geodesics on the real conformal compactification of the space V = Sym(2, ℝ) of all 2 × 2 real symmetric matrices as knots or 2-component links in and show that these knots or links have certain types of symmetry of period 2.
Keywords
geodesic, symmetric matrix, Shilov boundary, 2-periodic knot
Bibliography
- W. Bertram, Un théorème de Liouville pour les algèbres de Jordan, Bull. Soc. Math. France 124 (1996), 299-327.
- J. Faraut and A. Korányi, Analysis on Symmetric Cones, Oxford Univ. Press, Oxford, 1994.
- R. H. Fox, Knots and periodic transformations, in: Topology of 3-Manifolds and Related Topics (Proc. Univ. of Georgia Institute, 1961), Prentice-Hall, 1962, 177-182.
- K. W. Kwun, Piecewise linear involutions of
, Michigan Math. J. 16 (1969), 93-96. - S. Y. Lee, Y. Lim and C.-Y. Park, Symmetric geodesics on conformal compactifications of Euclidean Jordan algebras, Bull. Austral. Math. Soc. 59 (1999), 187-201.
- B. Makarevich, Ideal points of semisimple Jordan algebras, Mat. Zametki 15 (1974), 295-305 (in Russian).
- J. W. Morgan and H. Bass, The Smith Conjecture, Academic Press, 1984.
- D. Rolfsen, Knots and Links, Publish or Perish, 1976.
- P. A. Smith, Transformations of finite period II, Ann. of Math. 40 (1939), 690-711.
- Y. Tao, On fixed point free involutions of
, Osaka Math. J. 14 (1962), 145-152. - J. L. Tollefson, Involutions on
and other 3-manifolds Trans. Amer. Math. Soc. 183 (1973), 139-152.