ArticleOriginal scientific text

Title

Spaces and equations

Authors 1

Affiliations

  1. Mathematics Department, University of Colorado, Boulder, CO 80309-0395, U.S.A.

Abstract

It is proved, for various spaces A, such as a surface of genus 2, a figure-eight, or a sphere of dimension ≠ 1,3,7, and for any set Σ of equations, that Σ cannot be modeled by continuous operations on A unless Σ is undemanding (a form of triviality that is defined in the paper).

Bibliography

  1. J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20-104.
  2. J. F. Adams and M. F. Atiyah, K-theory and the Hopf invariant, Quart. J. Math. (Oxford) 17 (1966), 31-38.
  3. J. Adem, The relations on Steenrod powers of cohomology classes, in: Algebraic Geometry and Topology, Symposium in honor of Solomon Lefschetz, Princeton Univ. Press, 1957, 191-238.
  4. A. Bateson, Fundamental groups of topological R-modules, Trans. Amer. Math. Soc. 270 (1982), 525-536.
  5. R. Brown, From groups to groupoids: a brief survey, Bull. London Math. Soc. 19 (1987), 113-134.
  6. R. Brown, Topology: a Geometric Account of General Topology, Homotopy Types, and the Fundamental Groupoids, Halsted Press, New York, 1988.
  7. J. P. Coleman, Topologies on free algebras, Ph.D. Thesis, Univ. of Colorado, Boulder, 1992.
  8. H. Cook, Continua which admit only the identity mapping onto non-degenerate subcontinua, Fund. Math. 60 (1967), 241-249.
  9. J. Dieudonné, A History of Algebraic and Differential Topology 1900-1960, Birkhäuser, Boston, 1989.
  10. B. Eckmann, T. Ganea and P. Hilton, Generalized means, in: D. Gilbarg et al. (eds.), Studies in Mathematical Analysis, Stanford Univ. Press, 1963, 82-92.
  11. T. Evans, Products of points - some simple algebras and their identities, Amer. Math. Monthly 74 (1976), 363-372.
  12. O. C. García and W. Taylor, The lattice of interpretability types of varieties, Mem. Amer. Math. Soc. 305 (1984).
  13. M. Hall, Jr., The Theory of Groups, Macmillan, New York, 1959.
  14. P. J. Higgins, Categories and Groupoids, van Nostrand Reinhold, London, 1971.
  15. P. J. Hilton and S. Wylie, Homology Theory, Cambridge Univ. Press, 1960.
  16. H. Hopf, Über die Abbildungen von Sphären auf Sphären niedrigerer Dimension, Fund. Math. 25 (1935), 427-440.
  17. S.-T. Hu, Homotopy Theory, Academic Press, New York, 1959.
  18. I. M. James, Multiplications on spheres, I, II, Proc. Amer. Math. Soc. 8 (1957), 192-196, and Trans. Amer. Math. Soc. 84 (1957), 545-558.
  19. F. W. Lawvere, Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 869-872.
  20. F. W. Lawvere, Some algebraic problems in the context of functorial semantics of algebraic theories, in: Lecture Notes in Math. 61, Springer, 1968, 41-46.
  21. J.-L. Loday, J. D. Stasheff and A. A. Voronov (eds.), Operads: Proceedings of Renaissance Conferences, Contemp. Math. 202, Amer. Math. Soc., 1997.
  22. W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Interscience, New York, 1966.
  23. R. N. McKenzie, G. F. McNulty and W. F. Taylor, Algebras, Lattices, Varieties, Volume 1, Wadsworth and Brooks-Cole, Monterey, CA, 1987.
  24. R. McKenzie and S. Świerczkowski, Non-covering in the interpretability lattice of equational theories, Algebra Universalis 30 (1993), 157-170.
  25. R. McKenzie and W. Taylor, Interpretation of module varieties, J. Algebra 135 (1990), 456-493.
  26. J. R. Munkres, Elements of Algebraic Topology, Benjamin-Cummings, Menlo Park, CA, 1984.
  27. J. Mycielski and W. Taylor, Remarks and problems on a lattice of equational chapters, Algebra Universalis 23 (1986), 24-31.
  28. W. D. Neumann, Representing varieties of algebras by algebras, J. Austral. Math. Soc. 11 (1970), 1-8.
  29. W. D. Neumann, On Malcev conditions, ibid. 17 (1974), 376-384.
  30. S. P. Novikov, Topology, translated from the Russian by B. Botvinnik and R. G. Burns, Encyclopedia Math. Sci. 12, Springer, Berlin, 1996.
  31. A. Pultr and V. Trnková, Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories, Academia, Prague, 1980.
  32. J. Sichler and V. Trnková, Isomorphism and elementary equivalence of clone segments, Period. Math. Hungar. 32 (1996), 113-128.
  33. E. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
  34. N. E. Steenrod, Cohomology Operations, Ann. of Math. Stud. 50, Princeton Univ. Press, 1962.
  35. S. /Swierczkowski, Topologies in free algebras, Proc. London Math. Soc. (3) 14 (1964), 566-576.
  36. W. Taylor, Characterizing Mal'cev conditions, Algebra Universalis 3 (1973), 351-397.
  37. W. Taylor, Varieties obeying homotopy laws, Canad. J. Math. 29 (1977), 498-527.
  38. W. Taylor, Laws obeyed by topological algebras-extending results of Hopf and Adams, J. Pure Appl. Algebra 21 (1981), 75-98.
  39. W. Taylor, The Clone of a Topological Space, Res. Exp. Math. 13, Heldermann, 1986.
  40. W. Taylor, Abstract clone theory, in: Algebras and Orders (Montreal, 1991), I. G. Rosenberg and G. Sabidussi (eds.), Kluwer, 1993, 507-530.
  41. V. Trnková, Semirigid spaces, Trans. Amer. Math. Soc. 343 (1994), 305-325.
  42. V. Trnková, Continuous and uniformly continuous maps of powers of metric spaces, Topology Appl. 63 (1995), 189-200.
  43. V. Trnková, Algebraic theories, clones and their segments, Appl. Categ. Structures 4 (1996) 241-249.
  44. V. Trnková, Representation of algebraic theories and nonexpanding maps, J. Pure Appl. Algebra, to appear.
  45. G. W. Whitehead, Elements of Homotopy Theory, Springer, New York, 1978.
  46. G. Wraith, Algebraic Theories, Lecture Notes Series 22, Matematisk Institut, Universitet Aarhus, 1970.
Pages:
193-240
Main language of publication
English
Received
1999-01-13
Accepted
1999-09-16
Published
2000
Exact and natural sciences