ArticleOriginal scientific text

Title

Near metric properties of function spaces

Authors 1, 2

Affiliations

  1. Merton College, Oxford, OX1 4JD, U.K.
  2. Department of General Topology and Geometry, Faculty of Mechanics and Mathematics, Moscow State University, 119899 Moscow, Russia

Abstract

"Near metric" properties of the space of continuous real-valued functions on a space X with the compact-open topology or with the topology of pointwise convergence are examined. In particular, it is investigated when these spaces are stratifiable or cometrisable.

Keywords

function space, pointwise topology, compact-open topology, cometrisable, stratifiable

Bibliography

  1. [Bo] C. R. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966), 1-16.
  2. [Bu] R. E. Buck, Some weaker monotone separation and basis properties, Topology Appl. 69 (1996), 1-12.
  3. [CR] P. J. Collins and A. W. Roscoe, Criteria for metrisability, Proc. Amer. Math. Soc. 90 (1984), 631-640.
  4. [Du] J. Dugundji, An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 353-367.
  5. [FGMS]S. Fisher, P. M. Gartside, T. Mizokami and N. Shimane, Near metric properties of hyperspaces, Topology Proc. 22 (1997), 197-211.
  6. [Ga] P. M. Gartside, Non-stratifiability of topological vector spaces, Topology Appl. 86 (1998), 133-140.
  7. [Gr1] G. Gruenhage, Generalized metric spaces, in: Handbook of Set-Theoretic Topology, North-Holland, 1984, 423-503.
  8. [Gr2] G. Gruenhage, Generalized metric spaces and metrization, in: Recent Progress in General Topology, North-Holland, 1992, 239-263.
  9. [Gr3] G. Gruenhage, Cosmicity of cometrizable spaces, Trans. Amer. Math. Soc. 313 (1989), 301-315.
  10. [H] R. W. Heath, A paracompact semi-metric space which is not an M3 space, Proc. Amer. Math. Soc. 17 (1966), 868-870.
  11. [KV] K. Kunen and J. E. Vaughan, Handbook of Set-Theoretic Topology, North Holland, 1984.
  12. [McNt] R. A. McCoy and I. Ntantu, Topological Properties of Spaces of Continuous Functions, Lecture Notes in Math. 1315, Springer, 1988.
  13. [NP] P. J. Nyikos and S. Purisch, Monotone normality and paracompactness in scattered spaces, in: Papers in General Topology and Related Category Theory and Topological Algebra, Ann. New York Acad. Sci. 552, New York Acad. Sci., 1989, 124-137.
  14. [Shk] S. A. Shkarin, preprint.
  15. [Tk] M. G. Tkachenko, Factorization theorems for topological groups and their applications, Topology Appl. 38 (1991), 21-37.
  16. [U] V. V. Uspenskiĭ, On the topology of a free locally convex space, Dokl. Akad. Nauk SSSR 270 (1983), 1334-1337.
Pages:
97-114
Main language of publication
English
Received
1998-10-06
Accepted
1999-09-17
Published
2000
Exact and natural sciences