ArticleOriginal scientific text

Title

Trees of visible components in the Mandelbrot set

Authors 1

Affiliations

  1. Department of Mathematics, University of Jyväskylä, P.O. Box 35, 40351 Jyväskylä, Finland

Abstract

We discuss the tree structures of the sublimbs of the Mandelbrot set M, using internal addresses of hyperbolic components. We find a counterexample to a conjecture by Eike Lau and Dierk Schleicher concerning topological equivalence between different trees of visible components, and give a new proof to a theorem of theirs concerning the periods of hyperbolic components in various trees.

Bibliography

  1. [At] P. Atela, Bifurcations of dynamic rays in complex polynomials of degree two, Ergodic Theory Dynam. Systems 12 (1991), 401-423.
  2. [Be] A. F. Beardon, Iteration of Rational Functions, Complex Analytic Dynamical Systems, Grad. Texts in Math. 132, Springer, 1991.
  3. [BK] C. Bandt and K. Keller, Symbolic dynamics for angle-doubling on the circle II: Symbolic description of the abstract Mandelbrot set, Nonlinearity 6 (1993), 377-392.
  4. [BS] H. Bruin and D. Schleicher, Symbolic Dynamics of Quadratic Polynomials, in preparation.
  5. [CG] L. Carleson and T. W. Gamelin, Complex Dynamics, Universitext, Springer, 1993.
  6. [K1] K. Keller, Correspondence and translation principles for the Mandelbrot set, preprint #14, Institute for Mathematical Sciences, Stony Brook, 1997.
  7. [K2] K. Keller, Errata for Correspondence and translation principles for the Mandelbrot set', http://www.math-inf.uni-greifswald.de/~keller/research.html.
  8. [LS] E. Lau and D. Schleicher, Internal addresses in the Mandelbrot set and irreducibility of polynomials, preprint #19, Institute for Mathematical Sciences, Stony Brook, 1994,
  9. [La] P. Lavaurs, Une description combinatoire de l'involution définie par M sur les rationnels à dénominateur impair, C. R. Acad. Sci. Paris 303 (1986), 143-146.
  10. [Mi] J. Milnor, Periodic orbits, external rays, and the Mandelbrot set; an expository account, preprint #3, Institute for Mathematical Sciences, Stony Brook, 1999.
  11. [Pe] C. Penrose, Quotients of the shift associated with dendrite Julia sets of quadratic polynomials, Ph.D. thesis, Warwick, 1990.
  12. [S1] D. Schleicher, Internal addresses in the Mandelbrot set and irreducibility of polynomials, Ph.D. thesis, Cornell Univ., 1994.
  13. [S2] D. Schleicher, Rational parameter rays of the Mandelbrot set, preprint #13, Institute for Mathematical Sciences, Stony Brook, 1997.
  14. [Th] W. Thurston, On the geometry and dynamics of iterated rational maps, preprint, Princeton Univ., 1985.
Pages:
41-60
Main language of publication
English
Received
1999-04-27
Accepted
2000-01-18
Published
2000
Exact and natural sciences