ArticleOriginal scientific textEvery reasonably sized matrix group is a subgroup of
Title
Every reasonably sized matrix group is a subgroup of
Authors 1
Affiliations
- Department of Mathematics, University of North Texas, P.O. Box 311430, Denton, TX 76203-1430, U.S.A.
Abstract
Every reasonably sized matrix group has an injective homomorphism into the group of all bijections of the natural numbers. However, not every reasonably sized simple group has an injective homomorphism into .
Keywords
infinite symmetric group, matrix groups, nonarchimedian absolute values, field extensions, topological groups
Bibliography
- E. Artin, Algebraic Numbers and Algebraic Functions, Gordon and Breach, New York, 1967.
- N. Bourbaki, Commutative Algebra, Addison-Wesley, Reading, MA, 1972.
- N. G. de Bruijn, Embedding theorems for infinite groups, Indag. Math. 19 (1957), 560-569; Konink. Nederl. Akad. Wetensch. Proc. 60 (1957), 560-569.
- J. Dieudonné, La géométrie des groupes classiques, 2nd ed., Springer, Berlin, 1963.
- J. D. Dixon, P. M. Neumann and S. Thomas, Subgroups of small index in infinite symmetric groups, Bull. London Math. Soc. 18 (1986), 580-586.
- N. Jacobson, Basic Algebra II, W. H. Freeman, San Francisco, 1980.
- I. Kaplansky, Fields and Rings, 2nd ed., Univ. of Chicago Press, Chicago, 1973.
- R. D. Mauldin (ed.), The Scottish Book, Birkhäuser, Boston, 1981.
- J. Schreier und S. M. Ulam, Über die Permutationsgruppe der natürlichen Zahlenfolge, Studia Math. 4 (1933), 134-141.
- J.-P. Serre, Lie Algebras and Lie Groups, W. A. Benjamin, New York, 1965.
- S. M. Ulam, A Collection of Mathematical Problems, Wiley, New York, 1960.
- S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1964.