ArticleOriginal scientific text

Title

Every reasonably sized matrix group is a subgroup of S

Authors 1

Affiliations

  1. Department of Mathematics, University of North Texas, P.O. Box 311430, Denton, TX 76203-1430, U.S.A.

Abstract

Every reasonably sized matrix group has an injective homomorphism into the group S of all bijections of the natural numbers. However, not every reasonably sized simple group has an injective homomorphism into S.

Keywords

infinite symmetric group, matrix groups, nonarchimedian absolute values, field extensions, topological groups

Bibliography

  1. E. Artin, Algebraic Numbers and Algebraic Functions, Gordon and Breach, New York, 1967.
  2. N. Bourbaki, Commutative Algebra, Addison-Wesley, Reading, MA, 1972.
  3. N. G. de Bruijn, Embedding theorems for infinite groups, Indag. Math. 19 (1957), 560-569; Konink. Nederl. Akad. Wetensch. Proc. 60 (1957), 560-569.
  4. J. Dieudonné, La géométrie des groupes classiques, 2nd ed., Springer, Berlin, 1963.
  5. J. D. Dixon, P. M. Neumann and S. Thomas, Subgroups of small index in infinite symmetric groups, Bull. London Math. Soc. 18 (1986), 580-586.
  6. N. Jacobson, Basic Algebra II, W. H. Freeman, San Francisco, 1980.
  7. I. Kaplansky, Fields and Rings, 2nd ed., Univ. of Chicago Press, Chicago, 1973.
  8. R. D. Mauldin (ed.), The Scottish Book, Birkhäuser, Boston, 1981.
  9. J. Schreier und S. M. Ulam, Über die Permutationsgruppe der natürlichen Zahlenfolge, Studia Math. 4 (1933), 134-141.
  10. J.-P. Serre, Lie Algebras and Lie Groups, W. A. Benjamin, New York, 1965.
  11. S. M. Ulam, A Collection of Mathematical Problems, Wiley, New York, 1960.
  12. S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1964.
Pages:
35-40
Main language of publication
English
Received
1999-01-08
Accepted
2000-02-09
Published
2000
Exact and natural sciences