Download PDF - Wildness in the product groups
ArticleOriginal scientific text
Title
Wildness in the product groups
Authors 1
Affiliations
- 6363 MSB, Mathematics University of California at Los Angeles, Los Angeles, CA90095-1555, U.S.A.
Abstract
Non-abelian Polish groups arising as countable products of countable groups can be tame in arbitrarily complicated ways. This contrasts with some results of Solecki who revealed a very different picture in the abelian case.
Keywords
group actions, Polish groups, group trees, product groups, permutation groups, Borel equivalence relations
Bibliography
- J. Barwise, Admissible Sets and Structures: An Approach to Definability Theory, Perspectives in Math. Logic, Springer, New York, 1975.
- H. Becker and A. S. Kechris, The Descriptive Set Theory of Polish Group Actions, London Math. Soc. Lecture Note Ser. 232, Cambridge, 1996.
- H. Friedman and L. Stanley, A Borel reducibility theory for classes of structures, J. Symbolic Logic 54 (1989), 894-914.
- G. Hjorth, A universal Polish G-space, Topology Appl. 91 (1999), 141-150.
- J. W. Hungerford, Algebra, Grad. Texts in Math. 73, Springer, New York, 1974.
- A. S. Kechris, Classical Descriptive Set Theory, Grad. Texts in Math. 156, Springer, Berlin, 1995.
- M. Makkai, An example concerning Scott heights, J. Symbolic Logic 46 (1981), 301-318.
- M. Nadel, Scott sentences and admissible sets, Ann. Math. Logic 7 (1974), 267-294.
- S. Shelah, Refuting the Ehrenfeucht conjecture on rigid models, Israel J. Math. 25 (1976), 273-286.
- W. Sierpiński, Elementary Number Theory, North-Holland, Amsterdam, 1988.
- S. Solecki, Equivalence relations induced by actions of Polish groups, Trans. Amer. Math. Soc. 347 (1995), 4765-4777.
- R. J. Vaught, Invariant sets in topology and logic, Fund. Math. 82 (1974/75) (collection of articles dedicated to Andrzej Mostowski on his sixtieth birthday), 269-294.