Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | 163 | 2 | 163-176

Tytuł artykułu

The measure algebra does not always embed

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
The Open Colouring Axiom implies that the measure algebra cannot be embedded into P(ℕ)/fin. We also discuss errors in previous results on the embeddability of the measure algebra.

Słowa kluczowe

Twórcy

autor
  • Department of Mathematics, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
  • Faculty of Information Technology and Systems, TU Delft, Postbus 5031, 2600 GA Delft, The Netherlands

Bibliografia

  • [1] M. Bekkali, Topics in Set Theory, Lecture Notes in Math. 1476, Springer, Berlin, 1991.
  • [2] M. G. Bell, Compact ccc nonseparable spaces of small weight, Topology Proc. 5 (1980), 11-25.
  • [3] M. Burke, Liftings for Lebesgue measure, in: Set Theory of the Reals, H. Judah (ed.), Israel Math. Conf. Proc. 6, Amer. Math. Soc., Providence, RI, 1993, 119-150.
  • [4] E. K. van Douwen, The integers and topology, in: Kunen and Vaughan [10], 111-167.
  • [5] A. Dow and K. P. Hart, ω* has (almost) no continuous images, Israel J. Math. 109 (1999), 29-39.
  • [6] I. Farah, Analytic ideals and their quotients, Ph.D. thesis, Univ. of Toronto, 1997.
  • [7] R. Frankiewicz, Some remarks on embeddings of Boolean algebras and topological spaces, II, Fund. Math. 126 (1985), 63-68.
  • [8] R. Frankiewicz and A. Gutek, Some remarks on embeddings of Boolean algebras and the topological spaces, I, Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), 471-476.
  • [9] W. Just, A weak version of AT from OCA, in: Set Theory of the Continuum, H. Judah, W. Just and H. Woodin (eds.), Math. Sci. Res. Inst. Publ. 26, Springer, Berlin, 1992, 281-291.
  • [10] K. Kunen and J. E. Vaughan (eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984.
  • [11] N. N. Luzin, On subset of the series of natural numbers, Izv. Akad. Nauk SSSR Ser. Mat. 11 (1947), 403-410 (in Russian).
  • [12] J. van Mill, Weak P-points in Čech-Stone compactifications, Trans. Amer. Math. Soc. 273 (1982), 657-678.
  • [13] J. van Mill, An introduction to βω, in: Kunen and Vaughan [10], 503-568.
  • [14] I. I. Parovičenko [I. I. Parovichenko], A universal bicompact of weight ℵ, Soviet Math. Dokl. 4 (1963), 592-595; Russian original: Dokl. Akad. Nauk SSSR 150 (1963), 36-39.
  • [15] S. Shelah, Proper Forcing, Lecture Notes in Math. 940, Springer, Berlin, 1982.
  • [16] S. Shelah, Lifting problem for the measure algebra, Israel J. Math 45 (1983), 90-96.
  • [17] S. Shelah, Proper and Improper Forcing, Perspect. Math. Logic, Springer, Berlin, 1998.
  • [18] S. Todorčević, Partition Problems in Topology, Contemp. Math. 34, Amer. Math. Soc., Providence, RI, 1989.

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-fmv163i2p163bwm