ArticleOriginal scientific text

Title

On ergodicity of some cylinder flows

Authors 1

Affiliations

  1. Faculty of Mathematics and Computer, Science Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland

Abstract

We study ergodicity of cylinder flows of the form   Tf:{symT}×{symT}×, Tf(x,y)=(x+α,y+f(x)), where f:{symT} is a measurable cocycle with zero integral. We show a new class of smooth ergodic cocycles. Let k be a natural number and let f be a function such that Dkf is piecewise absolutely continuous (but not continuous) with zero sum of jumps. We show that if the points of discontinuity of Dkf have some good properties, then Tf is ergodic. Moreover, there exists εf>0 such that if v:{symT} is a function with zero integral such that Dkv is of bounded variation with Var(Dkv)<εf, then Tf+v is ergodic.

Bibliography

  1. I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, Berlin, 1982.
  2. H. Furstenberg, Strict ergodicity and transformations on the torus, Amer. J. Math. 83 (1961), 573-601.
  3. P. Gabriel, M. Lemańczyk et P. Liardet, Ensemble d'invariants pour les produits croisés de Anzai, Mém. Soc. Math. France 47 (1991).
  4. P. Hellekalek and G. Larcher, On the ergodicity of a class of skew products, Israel J. Math. 54 (1986), 301-306.
  5. M. R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. Mat. IHES 49 (1979), 5-234.
  6. M. Lemańczyk, F. Parreau and D. Volný, Ergodic properties of real cocycles and pseudo-homogeneous Banach spaces, Trans. Amer. Math. Soc. 348 (1996), 4919-4938.
  7. W. Parry, Topics in Ergodic Theory, Cambridge Univ. Press, Cambridge, 1981.
  8. D. Pask, Skew products over the irrational rotation, Israel J. Math. 69 (1990), 65-74.
  9. D. Pask, Ergodicity of certain cylinder flows, ibid. 76 (1991), 129-152.
  10. K. Schmidt, Cocycles of Ergodic Transformation Groups, Macmillan Lectures in Math. 1, Delhi, 1977.
Pages:
117-130
Main language of publication
English
Received
1998-11-16
Published
2000
Exact and natural sciences