ArticleOriginal scientific text
Title
On ergodicity of some cylinder flows
Authors 1
Affiliations
- Faculty of Mathematics and Computer, Science Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
Abstract
We study ergodicity of cylinder flows of the form
, ,
where is a measurable cocycle with zero integral. We show a new class of smooth ergodic cocycles. Let k be a natural number and let f be a function such that is piecewise absolutely continuous (but not continuous) with zero sum of jumps. We show that if the points of discontinuity of have some good properties, then is ergodic. Moreover, there exists such that if is a function with zero integral such that is of bounded variation with , then is ergodic.
Bibliography
- I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, Berlin, 1982.
- H. Furstenberg, Strict ergodicity and transformations on the torus, Amer. J. Math. 83 (1961), 573-601.
- P. Gabriel, M. Lemańczyk et P. Liardet, Ensemble d'invariants pour les produits croisés de Anzai, Mém. Soc. Math. France 47 (1991).
- P. Hellekalek and G. Larcher, On the ergodicity of a class of skew products, Israel J. Math. 54 (1986), 301-306.
- M. R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. Mat. IHES 49 (1979), 5-234.
- M. Lemańczyk, F. Parreau and D. Volný, Ergodic properties of real cocycles and pseudo-homogeneous Banach spaces, Trans. Amer. Math. Soc. 348 (1996), 4919-4938.
- W. Parry, Topics in Ergodic Theory, Cambridge Univ. Press, Cambridge, 1981.
- D. Pask, Skew products over the irrational rotation, Israel J. Math. 69 (1990), 65-74.
- D. Pask, Ergodicity of certain cylinder flows, ibid. 76 (1991), 129-152.
- K. Schmidt, Cocycles of Ergodic Transformation Groups, Macmillan Lectures in Math. 1, Delhi, 1977.