ArticleOriginal scientific text

Title

Dimensionsgrad for locally connected Polish spaces

Authors 1, 2

Affiliations

  1. Chair of General Topology and Geometry, Mech. Math. Faculty, Moscow State University, 119-899 Moscow, Russia
  2. Faculteit der Exacte Wetenschappen, Divisie Wiskunde en Informatica, Vrije Universiteit, De Boelelaan 1081a, 1081 HV Amsterdam, the Netherlands

Abstract

It is shown that for every n ≥ 2 there exists an n-dimensional locally connected Polish space with Dimensionsgrad 1.

Keywords

Dimensionsgrad, dimension, locally connected space

Bibliography

  1. P. S. Aleksandrov and B. A. Pasynkov, Introduction to Dimension Theory, Nauka, Moscow, 1973 (in Russian).
  2. L. E. J. Brouwer, Über den natürlichen Dimensionsbegriff, J. Reine Angew. Math. 142 (1913), 146-152.
  3. R. Engelking, General Topology, Heldermann, Berlin, 1989.
  4. R. Engelking, Theory of Dimensions: Finite and Infinite, Heldermann, Berlin, 1995.
  5. V. V. Fedorchuk, The fundamentals of dimension theory, in: Encyclopedia Math. Sci. 17, A. V. Arkhangel'skiĭ and L. S. Pontryagin (eds.), Springer, Berlin, 1990, 91-202.
  6. V. V. Fedorchuk, Urysohn's identity and dimension of manifolds, Uspekhi Mat. Nauk 53 (1998), no. 5, 73-114 (in Russian).
  7. V. V. Fedorchuk, M. Levin and E. V. Shchepin, On Brouwer's definition of dimension, ibid. 54 (1999), no. 2, 193-194 (in Russian).
  8. J. G. Hocking and G. S. Young, Topology, Addison-Wesley, Reading, Mass., 1961.
  9. W. Hurewicz and H. Wallman, Dimension Theory, Van Nostrand, Princeton, N.J., 1941.
  10. D. M. Johnson, The problem of the invariance of dimension in the growth of modern topology, Part II, Arch. Hist. Exact Sci. 25 (1981), 85-267.
  11. K. Kuratowski, Topology I, II, PWN - Polish Scientific Publishers and Academic Press, Warszawa and New York, 1966.
  12. S. Mazurkiewicz, O arytmetyzacji continuów, C. R. Varsovie 6 (1913), 305-311.
  13. J. van Mill, Infinite-Dimensional Topology: Prerequisites and Introduction, North-Holland, Amsterdam, 1989.
  14. R. Pol, A weakly infinite-dimensional compactum which is not countable-dimen- sional, Proc. Amer. Math. Soc. 82 (1981), 634-636.
Pages:
77-82
Main language of publication
English
Received
1999-05-12
Accepted
1999-10-05
Published
2000
Exact and natural sciences