ArticleOriginal scientific text
Title
Dimensionsgrad for locally connected Polish spaces
Authors 1, 2
Affiliations
- Chair of General Topology and Geometry, Mech. Math. Faculty, Moscow State University, 119-899 Moscow, Russia
- Faculteit der Exacte Wetenschappen, Divisie Wiskunde en Informatica, Vrije Universiteit, De Boelelaan 1081a, 1081 HV Amsterdam, the Netherlands
Abstract
It is shown that for every n ≥ 2 there exists an n-dimensional locally connected Polish space with Dimensionsgrad 1.
Keywords
Dimensionsgrad, dimension, locally connected space
Bibliography
- P. S. Aleksandrov and B. A. Pasynkov, Introduction to Dimension Theory, Nauka, Moscow, 1973 (in Russian).
- L. E. J. Brouwer, Über den natürlichen Dimensionsbegriff, J. Reine Angew. Math. 142 (1913), 146-152.
- R. Engelking, General Topology, Heldermann, Berlin, 1989.
- R. Engelking, Theory of Dimensions: Finite and Infinite, Heldermann, Berlin, 1995.
- V. V. Fedorchuk, The fundamentals of dimension theory, in: Encyclopedia Math. Sci. 17, A. V. Arkhangel'skiĭ and L. S. Pontryagin (eds.), Springer, Berlin, 1990, 91-202.
- V. V. Fedorchuk, Urysohn's identity and dimension of manifolds, Uspekhi Mat. Nauk 53 (1998), no. 5, 73-114 (in Russian).
- V. V. Fedorchuk, M. Levin and E. V. Shchepin, On Brouwer's definition of dimension, ibid. 54 (1999), no. 2, 193-194 (in Russian).
- J. G. Hocking and G. S. Young, Topology, Addison-Wesley, Reading, Mass., 1961.
- W. Hurewicz and H. Wallman, Dimension Theory, Van Nostrand, Princeton, N.J., 1941.
- D. M. Johnson, The problem of the invariance of dimension in the growth of modern topology, Part II, Arch. Hist. Exact Sci. 25 (1981), 85-267.
- K. Kuratowski, Topology I, II, PWN - Polish Scientific Publishers and Academic Press, Warszawa and New York, 1966.
- S. Mazurkiewicz, O arytmetyzacji continuów, C. R. Varsovie 6 (1913), 305-311.
- J. van Mill, Infinite-Dimensional Topology: Prerequisites and Introduction, North-Holland, Amsterdam, 1989.
- R. Pol, A weakly infinite-dimensional compactum which is not countable-dimen- sional, Proc. Amer. Math. Soc. 82 (1981), 634-636.