ArticleOriginal scientific text

Title

Chains and antichains in Boolean algebras

Authors 1, 2

Affiliations

  1. Department od Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 3G3
  2. C.N.R.S. (ESA 753), Université Paris 7, 2, Place Jussieu, 75251 Paris Cedex 05, France

Abstract

We give an affirmative answer to problem DJ from Fremlin's list [8] which asks whether MAω1 implies that every uncountable Boolean algebra has an uncountable set of pairwise incomparable elements.

Bibliography

  1. U. Abraham and S. Shelah, Martin's axiom does not imply that every two 1-dense sets of reals are isomorphic, Israel J. Math. 38 (1981), 161-176.
  2. J. E. Baumgartner, Chains and antichains in P(ℕ), J. Symbolic Logic 45 (1980), 85-92.
  3. J. E. Baumgartner, Applications of the proper forcing axiom, in: Handbook of Set-Theoretic Topology, Elsevier, Amsterdam, 1984, 913-959.
  4. J. E. Baumgartner and P. Komjáth, Boolean algebras in which every chain and antichain is countable, Fund. Math. 111 (1981), 125-133.
  5. R. Bonnet and S. Shelah, Narrow Boolean algebras, Ann. Pure Appl. Logic 28 (1985), 1-12.
  6. B. Dushnik and E. W. Miller, Partially ordered sets, Amer. J. Math. 63 (1941), 600-610.
  7. D. Fremlin, Consequences of Martin's Axiom, Cambridge Univ. Press, 1984.
  8. D. Fremlin, Problems, version of May, 1998.
  9. F. Galvin and B. Jónsson, Distributive sublattices of a free lattice, Canad. J. Math. 13 (1961), 265-272.
  10. Dj. Kurepa, Transformations monotones des ensembles partiellement ordonnés, Rev. Cienc. (Lima) 437 (1943), 483-500.
  11. J. D. Monk, Cardinal Invariants on Boolean Algebras, Birkhäuser, Basel, 1996.
  12. S. Shelah, Decomposing uncountable squares to countably many chains, J. Combin. Theory Ser. A 21 (1976), 110-114.
  13. S. Shelah, On uncountable Boolean algebras with no uncountable pairwise comparable or incomparable sets of elements, Notre Dame J. Formal Logic 22 (1984), 301-308.
  14. W. Sierpiński, Sur un problème de la théorie des relations, Ann. Scuola Norm. Sup. Pisa (2) 2 (1933), 285-287.
  15. S. Todorčević, Trees and linearly ordered sets, in: Handbook of Set-Theoretic Topology, Elsevier, Amsterdam, 1984, 235-293.
  16. S. Todorčević, Remarks on chain conditions in products, Compositio Math. 55 (1985), 295-302.
  17. S. Todorčević, Remarks on cellularity in products, ibid. 57 (1986), 357-372.
  18. S. Todorčević, Partitioning pairs of countable ordinals, Acta Math. 159 (1987), 261-294.
  19. S. Todorčević, Irredundant sets in Boolean algebras, Trans. Amer. Math. Soc. 339 (1993), 35-44.
Pages:
55-76
Main language of publication
English
Received
1999-05-05
Accepted
1999-10-29
Published
2000
Exact and natural sciences