ArticleOriginal scientific text

Title

Misiurewicz maps unfold generically (even if they are critically non-finite)

Authors 1

Affiliations

  1. Department of Mathematics, University of Warwick, Coventry CV4 7AL, United Kingdom

Abstract

We show that in normalized families of polynomial or rational maps, Misiurewicz maps (critically finite or infinite) unfold generically. For example, if fλ0 is critically finite with non-degenerate critical point c1(λ0),...,cn(λ0) such that fλ0ki(ci(λ0))=pi(λ0) are hyperbolic periodic points for i = 1,...,n, then  IV-1. Age impartible......................................................................................................................................................................... 31  λ(fλk1(c1(λ))-p1(λ),...,fλkd-2(cd-2(λ))-pd-2(λ)) is a local diffeomorphism for λ near λ0. For quadratic families this result was proved previously in {DH} using entirely different methods.

Bibliography

  1. [AGLV] V. I. Arnol'd, V. V. Goryunov, O. V. Lyashko and V. A. Vasil'ev, Singularity Theory I, Springer, 1998.
  2. [DH] A. Douady and J. H. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. Ecole Norm. Sup. 18 (1985), 287-343.
  3. [Le] O. Lehto, Univalent Functions and Teichmüller Spaces, Grad. Texts in Math. 109, Springer, 1987.
  4. [LV] O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, Springer, 1973.
  5. [LS1] G. Levin and S. van Strien, Local connectivity of the Julia set of real polynomials, Ann. of Math. 147 (1998), 471-541.
  6. [LS2] G. Levin and S. van Strien, Total disconnectedness of the Julia set of real polynomials, Astérisque, to appear.
  7. [Ma1] R. Mañé, Hyperbolicity, sinks and measure in one dimensional dynamics, Comm. Math. Phys. 100 (1985), 495-524.
  8. [Ma2] R. Mañé, On a theorem of Fatou, Bol. Soc. Brasil. Mat. 24 (1993), 1-11.
  9. [MSS] R. Mañé, P. Sad and D. Sullivan, On the dynamics of rational maps, Ann. Sci. Ecole Norm. Sup. 16 (1983), 193-217.
  10. [McM] C. McMullen, Complex Dynamics and Renormalization, Ann. of Math. Stud. 135, Princeton Univ. Press, 1994.
  11. [MS] W. de Melo and S. van Strien, One-Dimensional Dynamics, Ergeb. Math. Grenzgeb. 25, Springer, 1993.
  12. [ST] M. Shishikura and L. Tan, Mañé's theorem, to appear.
  13. [TL] L. Tan, Similarity between the Mandelbrot set and Julia sets, Comm. Math. Phys. 134 (1990), 587-617.
  14. [Tsu] M. Tsujii, A simple proof for monotonicity of entropy in the quadratic family, Ergodic Theory Dynam. Systems, to appear.
Pages:
39-54
Main language of publication
English
Received
1999-04-21
Accepted
1999-09-23
Published
2000
Exact and natural sciences