ArticleOriginal scientific text

Title

Homotopy orbits of free loop spaces

Authors 1, 2

Affiliations

  1. Department of Mathematics, University of Aarhus, Ny Munkegade, DK-8000 Århus C, Denmark
  2. Département de Mathématiques, Université de Paris Nord, URA 742 du CNRS, Avenue Jean-Baptiste Clément, F-93430 Villetaneuse, France

Abstract

Let X be a space with free loop space ΛX and mod two cohomology R = H*X. We construct functors Ωλ(R) and ℓ(R) together with algebra homomorphisms e:Ωλ(R)H(ΛX) and ψ:(R)H(ES1×S1ΛX). When X is 1-connected and R is a symmetric algebra we show that these are isomorphisms.

Bibliography

  1. [Loday] J.-L. Loday, Cyclic Homology, Grundlehren Math. Wiss. 301, Springer, 1992.
  2. [Madsen] I. Madsen, Algebraic K-theory and traces, in: Current Developments in Mathematics, International Press, Boston, 1995, 191-321.
  3. [Milgram] R. J. Milgram, Unstable Homotopy from the Stable Point of View, Lecture Notes in Math. 368, Springer, 1974.
  4. [Ottosen] I. Ottosen, Higher cyclic reduced powers, J. Pure Appl. Algebra, to appear.
  5. [Schwartz] L. Schwartz, Unstable Modules over the Steenrod Algebra and Sullivan's Fixed Point Set Conjecture, Chicago Lectures in Mathematics, Univ. of Chicago Press, 1994.
  6. [Smith81] L. Smith, On the characteristic zero cohomology of the free loop space, Amer. J. Math. 103 (1981), 887-910.
  7. [Smith84] L. Smith, The Eilenberg-Moore spectral sequence and the mod 2 cohomology of certain free loop spaces, Illinois J. Math. 28 (1984), 516-522.
  8. [St-Ep] N. E. Steenrod and D. B. A. Epstein, Cohomology Operations, Ann. of Math. Stud. 50, Princeton Univ. Press, 1962.
Pages:
251-275
Main language of publication
English
Received
1998-10-29
Accepted
1999-06-09
Published
1999
Exact and natural sciences