Let X be an uncountable compact metrizable space of topological dimension zero. Given any a ∈[0,∞] there is a homeomorphism on X whose topological entropy is a.
Department of Mathematics, Faculty of Civil Engineering, Czech Technical University, Thákurova 7, 166 29 Praha 6, Czech Republic
Bibliografia
[1] L. Alsedà, J. Llibre, and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, Adv. Ser. Nonlinear Dynam. 5, World Sci., Singapore, 1993.
[2] R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401-414.
[3] H. Cook, Continua which admit only the identity mapping onto nondegenerate subcontinua, Fund. Math. 60 (1967), 241-249.
[4] M. Denker, C. Grillenberger, and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Math. 527, Springer, 1976.
[5] R. Engelking, Dimension Theory, North-Holland, Amsterdam, 1978.
[6] R. Engelking, General Topology, Heldermann, Berlin, 1989.
[7] S. Mazurkiewicz et W. Sierpiński, Contribution à la topologie des ensembles dénombrables, Fund. Math. 1 (1920), 17-27.
[8] P. Walters, An Introduction to Ergodic Theory, Grad. Texts in Math. 79, Springer, New York, 1981.