PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1999 | 162 | 2 | 99-117
Tytuł artykułu

Atomic compactness for reflexive graphs

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A first order structure $\gotm$ with universe M is atomic compact if every system of atomic formulas with parameters in M is satisfiable in $\gotm$ provided each of its finite subsystems is. We consider atomic compactness for the class of reflexive (symmetric) graphs. In particular, we investigate the extent to which "sparse" graphs (i.e. graphs with "few" vertices of "high" degree) are compact with respect to systems of atomic formulas with "few" unknowns, on the one hand, and are pure restrictions of their Stone-Čech compactifications, on the other hand.
Słowa kluczowe
Rocznik
Tom
162
Numer
2
Strony
99-117
Opis fizyczny
Daty
wydano
1999
otrzymano
1997-04-14
poprawiono
1999-02-27
Twórcy
  • Université de la Réunion 15, avenue René Cassin, BP 7151, 97715 Saint Denis Messag. Cedex 9, France, delhomme@univ-reunion.fr
Bibliografia
  • [1] E. Corominas, Sur les ensembles ordonnés projectifs et la propriété du point fixe, C. R. Acad. Sci. Paris Sér. I 311 (1990), 199-204.
  • [2] C. Delhommé, Propriétés de projection, thèse, Université Claude Bernard-Lyon I, 1995.
  • [3] C. Delhommé, Infinite projection properties, Math. Logic Quart. 44 (1998), 481-492.
  • [4] S. Hazan, On triangle-free projective graphs, Algebra Universalis 35 (1996), 185-196.
  • [5] R. McKenzie and S. Shelah, The cardinals of simple models for universal theories, in: Proc. Sympos. Pure Math. 25, Amer. Math. Soc., 1971, 53-74.
  • [6] J. Mycielski, Some compactifications of general algebras, Colloq. Math. 13 (1964), 1-9.
  • [7] J. Mycielski and C. Ryll-Nardzewski, Equationally compact algebras II, Fund. Math. 61 (1968), 271-281.
  • [8] W. Taylor, Atomic compactness and graph theory, ibid. 65 (1969), 139-145.
  • [9] W. Taylor, Compactness and chromatic number, ibid. 67 (1970), 147-153.
  • [10] W. Taylor, Some constructions of compact algebras, Ann. Math. Logic 3 (1971), 395-435.
  • [11] W. Taylor, Residually small varieties, Algebra Universalis 2 (1972), 33-53.
  • [12] B. Węglorz, Equationally compact algebras (I), Fund. Math. 59 (1966), 289-298.
  • [13] F. Wehrung, Equational compactness of bi-frames and projection algebras, Algebra Universalis 33 (1995), 478-515.
  • [14] G. Wenzel, Equational compactness, Appendix 6 in: G. Grätzer, Universal Algebra, 2nd ed., Springer, 1979.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-fmv162i2p99bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.