ArticleOriginal scientific text

Title

A Lefschetz-type coincidence theorem

Authors 1

Affiliations

  1. Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green Street, Urbana, IL 61801, U.S.A.

Abstract

A Lefschetz-type coincidence theorem for two maps f,g: X → Y from an arbitrary topological space to a manifold is given: Ifg=λfg, that is, the coincidence index is equal to the Lefschetz number. It follows that if λfg0 then there is an x ∈ X such that f(x) = g(x). In particular, the theorem contains well-known coincidence results for (i) X,Y manifolds, f boundary-preserving, and (ii) Y Euclidean, f with acyclic fibres. It also implies certain fixed point results for multivalued maps with "point-like" (acyclic) and "sphere-like" values.

Keywords

Lefschetz coincidence theory, Lefschetz number, coincidence index, fixed point, multivalued map

Bibliography

  1. E. G. Begle, The Vietoris Mapping Theorem for bicompact spaces, Ann. of Math. 81 (1965), 82-99.
  2. G. E. Bredon, Topology and Geometry, Springer, 1993.
  3. R. F. Brown, The Lefschetz Fixed Point Theorem, Scott-Foresman, Chicago, 1971.
  4. R. F. Brown and H. Schirmer, Nielsen coincidence theory and coincidence-producing maps for manifolds with boundary, Topology Appl. 46 (1992), 65-79.
  5. R. F. Brown and H. Schirmer, Correction to "Nielsen coincidence theory and coincidence-producing maps for manifolds with boundary", ibid. 67 (1995), 233-234.
  6. V. R. Davidyan, Coincidence points of two maps, Russian Acad. Sci. Sb. Math. 40 (1980), 205-210.
  7. V. R. Davidyan, On coincidence of two maps for manifolds with boundary, Russian Math. Surveys 38 (1983), no. 2, 176.
  8. A. Dawidowicz, Spherical maps, Fund. Math. 127 (1987), 187-196.
  9. A. Dold, Lectures on Algebraic Topology, Springer, 1980.
  10. A. Dold, Fixed point index and fixed point theorem for Euclidean neighborhood retracts, Topology 4 (1965), 1-8.
  11. A. Dold, The fixed point transfer of fibre-preserving maps, Math. Z. 148 (1976), 215-244.
  12. A. Dold, A coincidence-fixed-point index, Enseign. Math. (2) 24 (1978), 41-53.
  13. A. N. Dranishnikov, Absolute extensors in dimension n and dimension-raising n-soft maps, Russian Math. Surveys 39 (1984), no. 5, 63-111.
  14. S. Eilenberg and D. Montgomery, Fixed point theorems for multi-valued transformations, Amer. J. Math. 68 (1946), 214-222.
  15. L. Górniewicz, Homological methods in fixed-point theory of multi-valued maps, Dissertationes Math. (Rozprawy Mat.) 129 (1976).
  16. L. Górniewicz, Fixed point theorems for mutivalued maps of subsets of Euclidean spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 111-115.
  17. L. Górniewicz and A. Granas, Some general theorems in coincidence theory I, J. Math. Pures Appl. 60 (1981), 361-373.
  18. L. Górniewicz and A. Granas, Topology of morphisms and fixed point problems for set-valued maps, in: Fixed Point Theory and Applications, M. A. Thera and J.-B. Baillon (eds.), Pitman Res. Notes Math. Ser. 252, Longman Sci. Tech., Harlow, 1991, 173-191.
  19. V. G. Gutev, A fixed-point theorem for UVn usco maps, Proc. Amer. Math. Soc. 124 (1996), 945-952.
  20. B. Halpern, A general coincidence theory, Pacific J. Math. 77 (1978), 451-471.
  21. D. S. Kahn, An example in Čech cohomology, Proc. Amer. Math. Soc. 16 (1969), 584.
  22. W. Kryszewski, Remarks on the Vietoris Theorem, Topol. Methods Nonlinear Anal. 8 (1996), 383-405.
  23. S. Lefschetz, Algebraic Topology, Amer. Math. Soc. Colloq. Publ. 27, Amer. Math. Soc., Providence, RI, 1942.
  24. K. Mukherjea, Coincidence theory for manifolds with boundary, Topology Appl. 46 (1992), 23-39.
  25. M. Nakaoka, Coincidence Lefschetz numbers for a pair of fibre preserving maps, J. Math. Soc. Japan 32 (1980), 751-779.
  26. B. O'Neill, A fixed point theorem for multi-valued functions, Duke Math. J. 24 (1957), 61-62.
  27. S. N. Patnaik, Fixed points of multiple-valued transformations, Fund. Math. 65 (1969), 345-349.
  28. H. Schirmer, Fixed points, antipodal points and coincidences of n-acyclic valued multifunctions, in: Topological Methods in Nonlinear Functional Analysis, Contemp. Math. 21, Amer. Math. Soc., Providence, RI, 1983, 207-212.
  29. J. W. Vick, Homology Theory. An Introduction to Algebraic Topology, Academic Press, New York, 1973.
Pages:
65-89
Main language of publication
English
Received
1998-07-15
Published
1999
Exact and natural sciences