ArticleOriginal scientific text

Title

On entropy of patterns given by interval maps

Authors 1

Affiliations

  1. KM FSv ČVUT, Thákurova 7, 166 29 Praha 6, Czech Republic

Abstract

Defining the complexity of a green pattern exhibited by an interval map, we give the best bounds of the topological entropy of a pattern with a given complexity. Moreover, we show that the topological entropy attains its strict minimum on the set of patterns with fixed eccentricity m/n at a unimodal X-minimal case. Using a different method, the last result was independently proved in[11].

Keywords

interval map, topological entropy, cycle, pattern

Bibliography

  1. R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319.
  2. L. Alsedà, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, Adv. Ser. Nonlinear Dynam. 5, World Sci., Singapore, 1993.
  3. L. Alsedà, J. Llibre and M. Misiurewicz, Periodic orbits of maps of Y, Trans. Amer. Math. Soc. 313 (1989), 475-538.
  4. S. Baldwin, Generalizations of a theorem of Sharkovskii on orbits of continuous real-valued functions, Discrete Math. 67 (1987), 111-127.
  5. A. Berman and R. J. Plemmons, Non-Negative Matrices in the Mathematical Sciences, Academic Press, New York, 1979.
  6. L. S. Block and W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Math. 1513, Springer, Berlin, 1992.
  7. L. Block, J. Guckenheimer, M. Misiurewicz and L. S. Young, Periodic points and topological entropy of one dimensional maps, in: Global Theory of Dynamical Systems, Lecture Notes in Math. 819, Springer, Berlin, 1980, 18-34.
  8. A. Blokh, Rotation numbers, twists and a Sharkovskii-Misiurewicz-type order for patterns on the interval, Ergodic Theory Dynam. Systems 15 (1995), 1-14.
  9. A. Blokh, Functional rotation numbers for one dimensional maps, Trans. Amer. Math. Soc. 347 (1995), 499-514.
  10. A. Blokh, On rotation intervals for interval maps, Nonlinearity 7 (1994), 1395-1417.
  11. A. Blokh and M. Misiurewicz, Entropy of twist interval maps, Israel J. Math. 102 (1997), 61-99.
  12. J. Bobok and M. Kuchta, X-minimal patterns and generalization of Sharkovskii's theorem, Fund. Math. 156 (1998), 33-66.
  13. J. Bobok and I. Marek, On asymptotic behaviour of solutions of difference equations in partially ordered Banach spaces, submitted to Positivity.
  14. R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401-414.
  15. E. M. Coven and M. C. Hidalgo, On the topological entropy of transitive maps of the interval, Bull. Austral. Math. Soc. 44 (1991), 207-213.
  16. M. Denker, Ch. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Math. 527, Springer, 1976.
  17. T. Fort, Finite Difference and Difference Equations in the Real Domain, Oxford Univ. Press, 1965.
  18. A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia Math. Appl. 54, Cambridge Univ. Press, 1995.
  19. M. Misiurewicz, Minor cycles for interval maps, Fund. Math. 145 (1994), 281-304.
  20. M. Misiurewicz and Z. Nitecki, Combinatorial patterns for maps of the interval, Mem. Amer. Math. Soc. 456 (1990).
  21. M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings, Studia Math. 67 (1980), 45-63.
  22. W. Parry, Symbolic dynamics and transformations of the unit interval, Trans. Amer. Math. Soc. 122 (1966), 368-378.
  23. W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1974.
  24. P. Štefan, A theorem of Sharkovskii on the coexistence of periodic orbits of continuous endomorphisms of the real line, Comm. Math. Phys. 54 (1977), 237-248.
Pages:
1-36
Main language of publication
English
Received
1996-05-16
Accepted
1997-10-27
Published
1999
Exact and natural sciences