ArticleOriginal scientific text
Title
Partition properties of subsets of Pκλ
Authors 1
Affiliations
- Institute of Mathematics, University of Tsukuba, Tsukuba, 305-8571 Japan
Abstract
Let κ > ω be a regular cardinal and λ > κ a cardinal. The following partition property is shown to be consistent relative to a supercompact cardinal: For any with unbounded and 1 < γ < κ there is an unbounded Y ∪ X with for any n < ω.
Bibliography
- Y. Abe, Combinatorics for small ideals on
, Math. Logic Quart. 43 (1997), 541-549. - Y. Abe, private communication.
- J. Baumgartner, Iterated forcing, in: Surveys in Set Theory, A. Mathias (ed.), London Math. Soc. Lecture Note Ser. 87, Cambridge Univ. Press, Cambridge, 1983, 1-59.
- C. Di Prisco and W. Zwicker, Flipping properties and supercompact cardinals, Fund. Math. 109 (1980), 31-36.
- R. Engelking and M. Karłowicz, Some theorems of set theory and their topological consequences, ibid. 57 (1965), 275-285.
- T. Jech, Some combinatorial problems concerning uncountable cardinals, Ann. Math. Logic 5 (1973), 165-198.
- T. Jech and S. Shelah, A partition theorem for pairs of finite sets, J. Amer. Math. Soc. 4 (1991), 647-656.
- C. Johnson, Some partition relations for ideals on
, Acta Math. Hungar. 56 (1990), 269-282. - S. Kamo, Ineffability and partition property on
, J. Math. Soc. Japan 49 (1997), 125-143. - A. Kanamori, The Higher Infinite, Springer, Berlin, 1994.
- R. Laver, Making the supercompactness of κ indestructible under κ-directed closed forcing, Israel J. Math. 29 (1978), 385-388.
- M. Magidor, Combinatorial characterization of supercompact cardinals, Proc. Amer. Math. Soc. 42 (1974), 279-285.
- P. Matet, handwritten notes.
- T. Menas, A combinatorial property of
, J. Symbolic Logic 41 (1976), 225-234.