Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1999 | 161 | 3 | 241-277

Tytuł artykułu

Compacts connexes invariants par une application univalente

Autorzy

Treść / Zawartość

Języki publikacji

FR

Abstrakty

EN
Let K be a compact connected subset of cc, not reduced to a point, and F a univalent map in a neighborhood of K such that F(K) = K. This work presents a study and a classification of the dynamics of F in a neighborhood of K. When ℂ \ K has one or two connected components, it is proved that there is a natural rotation number associated with the dynamics. If this rotation number is irrational, the situation is close to that of "degenerate Siegel disks" or "degenerate Herman rings" studied by R. Pérez-Marco (in particular, any point of K is recurrent). In any other case (that is, if this number is rational or if ℂ \ K has more than two connected components), the situation is essentially trivial: the dynamics is of Morse-Smale type, and a complete description and classification modulo analytic conjugacy is given.

Rocznik

Tom

161

Numer

3

Strony

241-277

Daty

wydano
1999
otrzymano
1998-04-14
poprawiono
1999-03-02

Twórcy

  • Institut Non Linéaire de Nice, UMR CNRS-UNSA 6618, 1361 route des Lucioles, F-06560 Valbonne, France

Bibliografia

  • [B] G. D. Birkhoff, Sur quelques courbes fermées remarquables, Bull. Soc. Math. France 60 (1932), 1-26.
  • [C,G] L. Carleson and T. W. Gamelin, Complex Dynamics, Springer, 1993.
  • [C,L] M. L. Cartwright and J. C. Littlewood, Some fixed point theorems, Ann. of Math. 54 (1951), 1-37.
  • [E] J. Ecalle, Théorie des invariants holomorphes, Publ. Math. Orsay 67, 7409 (1974).
  • [H1] M. R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. Math. I.H.E.S. 49 (1979), 5-233.
  • [H2] M. R. Herman, Are there critical points on the boundaries of singular domains?, Comm. Math. Phys. 99 (1985), 593-612.
  • [L] P. Le Calvez, Propriétés des attracteurs de Birkhoff, Ergodic Theory Dynam. Systems 8 (1987), 241-310.
  • [M] J. Mather, Commutators of diffeomorphisms, Comm. Math. Helv. 48 (1973), 195-233.
  • [P,Y] J. Palis and J.-C. Yoccoz, Differentiable conjugacies of Morse-Smale diffeomorphisms, Bol. Soc. Brasil. Mat. 20 (1990), 25-48.
  • [PM1] R. Pérez-Marco, Fixed points and circle maps, Acta Math. 179 (1997), 243-294.
  • [PM2] R. Pérez-Marco, Topology of Julia sets and hedgehogs, preprint, Université de Paris-Sud, 94-48, 1994.
  • [PM3] R. Pérez-Marco, Hedgehog's dynamics, preprint.
  • [PM4] R. Pérez-Marco, Classification dynamique des continua pleins invariants par un difféomorphisme holomorphe, manuscrit, 1996.
  • [Po] C. Pommerenke, Boundary Behaviour of Conformal Maps, Springer, 1992.
  • [V] S. M. Voronin, Analytic classification of germs of conformal mappings (ℂ,0) → (ℂ,0) with identity linear part, Funktsional. Anal. i Prilozhen. 15 (1981), no. 1, 1-17 (in Russian).
  • [Y] J.-C. Yoccoz, Conjugaison des difféomorphismes analytiques du cercle, manuscrit, 1988.

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-fmv161i3p241bwm