We prove that the natural HNN-extensions of the fractional Fibonacci groups are the fundamental groups of high-dimensional knot complements. We also give some characterization and interpretation of these knots. In particular we show that some of them are 2-knots.
Sobolev Institute of Mathematics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
Bibliografia
[1] K. Brown, Cohomology of Groups, Springer, New York, 1982.
[2] H. Helling, A. Kim and J. Mennicke, A geometric study of Fibonacci groups, J. Lie Theory 8 (1998), 1-23.
[3] J. Hillman, Abelian normal subgroups of two-knot groups, Comment. Math. Helv. 61 (1986), 122-148.
[4] J. Hillman, 2-Knots and Their Groups, Austral. Math. Soc. Lecture Ser. 5, 1989.
[5] D. Johnson, Presentation of Groups, London Math. Soc. Lecture Note Ser. 22, Cambridge Univ. Press, 1976.
[6] A. Kim and A. Vesnin, A topological study of the fractional Fibonacci groups, Siberian Math. J. 39 (1998).
[7] C. MacLachlan, Generalizations of Fibonacci numbers, groups and manifolds, in: Combinatorial and Geometric Group Theory (Edinburgh, 1993), A. J. Duncan, N. D. Gilbert and J. Howie (eds.), London Math. Soc. Lecture Note Ser. 204, Cambridge Univ. Press, 1995, 233-238.
[8] W. Magnus, A. Karras and D. Solitar, Combinatorial Group Theory, Wiley Interscience, New York, 1966.
[9] S. Plotnik, Equivariant intersection forms, knots in $S^4$, and rotations in 2-spheres, Trans. Amer. Math. Soc. 296 (1986), 543-575.
[10] D. Rolfsen, Knots and Links, Publish or Perish, Berkeley, CA, 1976.
[11] A. Szczepański, High dimensional knot groups and HNN extensions of the Fibonacci groups, J. Knot Theory Ramifications 7 (1998), 503-508.