ArticleOriginal scientific text

Title

Countable partitions of the sets of points and lines

Authors 1

Affiliations

  1. Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269, U.S.A.

Abstract

The following theorem is proved, answering a question raised by Davies in 1963. If L0L1L2... is a partition of the set of lines of n, then there is a partition n=S0S1S2... such that |Si|2 whenever Li. There are generalizations to some other, higher-dimensional subspaces, improving recent results of Erdős, Jackson & Mauldin.

Keywords

infinite partitions, Euclidean space

Bibliography

  1. R. O. Davies, On a problem of Erdős concerning decompositions of the plane, Proc. Cambridge Philos. Soc. 59 (1963), 33-36.
  2. R. O. Davies, On a denumerable partition problem of Erdős, ibid., 501-502.
  3. P. Erdős, Some remarks on set theory IV, Michigan Math. J. 2 (1953-54), 169-173.
  4. P. Erdős, S. Jackson and R. D. Mauldin, On partitions of lines and space, Fund. Math. 145 (1994), 101-119.
  5. P. Erdős, S. Jackson and R. D. Mauldin, On infinite partitions of lines and space, ibid. 152 (1997), 75-95.
  6. J. H. Schmerl, Countable partitions of Euclidean space, Math. Proc. Cambridge Philos. Soc. 120 (1996), 7-12.
  7. W. Sierpiński, Sur un théorème équivalent à l'hypothèse du continu (2_0=1), Bull. Internat. Acad. Polon. Sci. Lett. Cl. Sci. Math. Nat. Sér. A Sci. Math. 1919, 1-3.
  8. J. C. Simms, Sierpiński's Theorem, Simon Stevin 65 (1991), 69-163.
Pages:
183-196
Main language of publication
English
Accepted
1998-12-02
Published
1999
Exact and natural sciences