ArticleOriginal scientific text

Title

Analytic determinacy and 0# A forcing-free proof of Harrington’s theorem

Authors 1

Affiliations

  1. UFR de Mathématiques, Université Paris 7, 75251 Paris Cedex 05, France

Abstract

We prove the following theorem: Given a⊆ω and 1α<ω1CK, if for some η<1 and all u ∈ WO of length η, a is Σα0(u), then a is Σα0. We use this result to give a new, forcing-free, proof of Leo Harrington's theorem: Σ11-Turing-determinacy implies the existence of 0#.

Bibliography

  1. [Gn] R. O. Gandy, On a problem of Kleene's, Bull. Amer. Math. Soc. 66 (1960), 501-502.
  2. [Hg] L. A. Harrington, Analytic determinacy and 0#, J. Symbolic Logic 43 (1978), 685-693.
  3. [Hn] J. Harrison, Recursive pseudo-well-orderings, Trans. Amer. Math. Soc. 131 (1968), 526-543.
  4. [Kn] A. Kanamori, The Higher Infinite, 2nd printing, Springer, Berlin, 1997.
  5. [Kc] A. S. Kechris, Measure and category in effective descriptive set-theory, Ann. Math. Logic 5 (1973), 337-384.
  6. [MW] R. Mansfield and G. Weitkamp, Recursive Aspects of Descriptive Set Theory, Oxford Univ. Press, Oxford, 1985.
  7. [Mr1] D. A. Martin, The axiom of determinacy and reduction principles in the analytical hierarchy, Bull. Amer. Math. Soc. 74 (1968), 687-689.
  8. [Mr2] D. A. Martin, Measurable cardinals and analytic games, Fund. Math. 66 (1970), 287-291.
  9. [Ms] Y. N. Moschovakis, Descriptive Set Theory, North-Holland, Amsterdam, 1980.
  10. [Sc1] G. E. Sacks, Countable admissible ordinals and hyperdegrees, Adv. Math. 19 (1976), 213-262.
  11. [Sc2] G. E. Sacks, Higher Recursion Theory, Springer, Berlin, 1990.
  12. [Sm] R. L. Sami, Questions in descriptive set theory and the determinacy of infinite games, Ph.D. Dissertation, Univ. of California, Berkeley, 1976.
  13. [Sl] J. Steel, Forcing with tagged trees, Ann. Math. Logic 15 (1978), 55-74.
  14. [Sr] J. Stern, Evaluation du rang de Borel de certains ensembles, C. R. Acad. Sci. Paris Sér. I 286 (1978), 855-857.
Pages:
153-159
Main language of publication
English
Received
1997-12-10
Accepted
1998-09-20
Published
1999
Exact and natural sciences