ArticleOriginal scientific text
Title
Area and Hausdorff dimension of the set of accessible points of the Julia sets of λe^z and λ sin(z)
Authors 1
Affiliations
- Institute of Mathematics, Technical University of Warsaw, Pl. Politechniki 1, 00-661 Warszawa, Poland
Abstract
The Julia set of the exponential function for λ ∈ (0,1/e) C_λ C_λ C_λ F_λ:z → (1/(2i))λ (e^{iz}-e^{-iz})!$! for λ ∈ (0,1) and prove that it has positive Lebesgue measure.
Bibliography
- I. N. Baker, Fixpoints and iterates of entire functions, Math. Z. 71 (1959), 146-153.
- R. Bowen, Hausdorff dimension of quasi-circles, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 11-26.
- R. L. Devaney and L. Goldberg, Uniformization of attracting basins for exponential maps, Duke Math. J. 2 (1987), 253-266.
- R. Devaney and M. Krych, Dynamics of exp(z), Ergodic Theory Dynam. Systems 4 (1984), 35-52.
- R. L. Devaney and F. Tangerman, Dynamics of entire functions near the essential singularity, ibid. 6 (1986), 489-503.
- P. L. Duren, Univalent Functions, Springer, New York, 1983.
- A. E. Eremenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), 989-1020.
- N. Makarov, On the distortion of boundary sets under conformal mappings, Proc. London Math. Soc. 51 (1985), 369-384.
- J. Mayer, An explosion point for the set of endpoints of the Julia set of λexp(z), Ergodic Theory Dynam. Systems 10 (1990), 177-183.
- C. McMullen, Area and Hausdorff dimension of Julia sets of entire functions, Trans. Amer. Math. Soc. 300 (1987), 329-342.
- F. Przytycki and M. Urbański, Conformal repellers and ergodic theory, in preparation.
- D. Ruelle, Repellers for real analytic maps, Ergodic Theory Dynam. Systems 2 (1982), 99-107.