ArticleOriginal scientific text

Title

A note on Tsirelson type ideals

Authors 1

Affiliations

  1. UFR de Mathématiques, Université Paris 7, 2 Place Jussieu, 75251 Paris, France

Abstract

Using Tsirelson's well-known example of a Banach space which does not contain a copy of c0 or lp, for p ≥ 1, we construct a simple Borel ideal IT such that the Borel cardinalities of the quotient spaces PIT and PI0 are incomparable, where I0 is the summable ideal of all sets A ⊆ ℕ such that nA1n+1<. This disproves a "trichotomy'' conjecture for Borel ideals proposed by Kechris and Mazur.

Bibliography

  1. [CS] P. G. Casazza and T. J. Shura, Tsirelson's Space, Lecture Notes in Math. 1363, Springer, 1989.
  2. [FJ] T. Figiel and W. B. Johnson, A uniformly convex Banach space which contains no lp, Compositio Math. 29 (1974), 179-190.
  3. [Hj1] G. Hjorth, Actions of S, manuscript.
  4. [Hj2] G. Hjorth, Actions by the classical Banach spaces, manuscript.
  5. [JN] S. Jalali-Naini, The monotone subsets of Cantor space, filters and descriptive set theory, doctoral dissertation, Oxford, 1976.
  6. [Ke1] A. Kechris, Classical Descriptive Set Theory, Springer, 1995.
  7. [Ke2] A. Kechris, Rigidity properties of Borel ideals on the integers, preprint.
  8. [KL] A. Kechris and A. Louveau, The structure of hypersmooth Borel equivalence relations, J. Amer. Math. Soc. 10 (1997), 215-242.
  9. [LV] A. Louveau and B. Veličković, A note on Borel equivalence relations, Proc. Amer. Math. Soc. 120 (1994), 255-259.
  10. [Mat] A. R. D. Mathias, A remark on rare filters, in: Infinite and Finite Sets, A. Hajnal et al. (eds.), Colloq. Math. Soc. János Bolyai 10, Vol. III, North-Holland, 1975, 1095-1097.
  11. [Ma1] K. Mazur, A modification of Louveau and Veličković construction for Fσ-ideals, preprint.
  12. [Ma2] K. Mazur, Towards a dichotomy for Fσ-ideals, preprint.
  13. [OS] E. Odell and T. Schlumprecht, Distortion and stabilized structure in Banach spaces; new geometric phenomena for Banach and Hilbert spaces, in: Proc. Internat. Congress of Mathematicians, Zürich, Birkhäuser, 1995, 955-965.
  14. [So] S. Solecki, Analytic ideals, Bull. Symbolic Logic 2 (1996), 339-348.
  15. [Ta] M. Talagrand, Compacts de fonctions mesurables et filtres non mesurables, Studia Math. 67 (1980), 13-43.
  16. [Ve] B. Veličković, Definable automorphisms of P(ω)/fin, Proc. Amer. Math. Soc. 96 (1986), 130-135.
Pages:
259-268
Main language of publication
English
Received
1998-04-10
Published
1999
Exact and natural sciences