ArticleOriginal scientific text
Title
A note on Tsirelson type ideals
Authors 1
Affiliations
- UFR de Mathématiques, Université Paris 7, 2 Place Jussieu, 75251 Paris, France
Abstract
Using Tsirelson's well-known example of a Banach space which does not contain a copy of or , for p ≥ 1, we construct a simple Borel ideal such that the Borel cardinalities of the quotient spaces and are incomparable, where is the summable ideal of all sets A ⊆ ℕ such that . This disproves a "trichotomy'' conjecture for Borel ideals proposed by Kechris and Mazur.
Bibliography
- [CS] P. G. Casazza and T. J. Shura, Tsirelson's Space, Lecture Notes in Math. 1363, Springer, 1989.
- [FJ] T. Figiel and W. B. Johnson, A uniformly convex Banach space which contains no
, Compositio Math. 29 (1974), 179-190. - [Hj1] G. Hjorth, Actions of
, manuscript. - [Hj2] G. Hjorth, Actions by the classical Banach spaces, manuscript.
- [JN] S. Jalali-Naini, The monotone subsets of Cantor space, filters and descriptive set theory, doctoral dissertation, Oxford, 1976.
- [Ke1] A. Kechris, Classical Descriptive Set Theory, Springer, 1995.
- [Ke2] A. Kechris, Rigidity properties of Borel ideals on the integers, preprint.
- [KL] A. Kechris and A. Louveau, The structure of hypersmooth Borel equivalence relations, J. Amer. Math. Soc. 10 (1997), 215-242.
- [LV] A. Louveau and B. Veličković, A note on Borel equivalence relations, Proc. Amer. Math. Soc. 120 (1994), 255-259.
- [Mat] A. R. D. Mathias, A remark on rare filters, in: Infinite and Finite Sets, A. Hajnal et al. (eds.), Colloq. Math. Soc. János Bolyai 10, Vol. III, North-Holland, 1975, 1095-1097.
- [Ma1] K. Mazur, A modification of Louveau and Veličković construction for
-ideals, preprint. - [Ma2] K. Mazur, Towards a dichotomy for
-ideals, preprint. - [OS] E. Odell and T. Schlumprecht, Distortion and stabilized structure in Banach spaces; new geometric phenomena for Banach and Hilbert spaces, in: Proc. Internat. Congress of Mathematicians, Zürich, Birkhäuser, 1995, 955-965.
- [So] S. Solecki, Analytic ideals, Bull. Symbolic Logic 2 (1996), 339-348.
- [Ta] M. Talagrand, Compacts de fonctions mesurables et filtres non mesurables, Studia Math. 67 (1980), 13-43.
- [Ve] B. Veličković, Definable automorphisms of P(ω)/fin, Proc. Amer. Math. Soc. 96 (1986), 130-135.