Department of Mathematics, York University, North York, Ontario, Canada M3J 1P3
Matematički Institut, Kneza Mihaila 35, 11 000 Beograd, Yugoslavia
Bibliografia
[1] P. G. Casazza, W. B. Johnson and L. Tzafriri, On Tsirelson's space, Israel J. Math. 47 (1984), 81-98.
[2] P. G. Casazza and T. J. Shura, Tsirelson's Space, Lecture Notes in Math. 1363, Springer, 1980.
[3] I. Farah, Analytic quotients, to appear.
[4] I. Farah, Analytic ideals and their quotients, PhD thesis, University of Toronto, 1997.
[5] I. Farah, Basis problem for turbulent actions, preprint, 1998.
[6] W. T. Gowers, Recent results in the theory of infinite-dimensional Banach spaces, in: Proc. Internat. Congress of Mathematicians, Zürich 1994, Birkhäuser, 1995, 932-942.
[7] G. Hjorth, Actions by classical Banach spaces, J. Symbolic Logic, to appear.
[8] G. Hjorth and A. S. Kechris, New dichotomies for Borel equivalence relations, Bull. Symbolic Logic 3 (1997), 329-346.
[9] A. S. Kechris, Rigidity properties of Borel ideals on the integers, Topology Appl. 85 (1998), 195-205.
[10] A. Louveau, On the size of quotients by definable equivalence relations, in: Proc. Internat. Congress of Mathematicians, Zürich 1994, Birkhäuser, 1995, 269-276.
[11] K. Mazur, $F_σ$-ideals and $ω_1ω_1*$-gaps in the Boolean algebra P(ω)/I, Fund. Math. 138 (1991), 103-111.
[12] K. Mazur, Towards the dichotomy for $F_σ$-ideals, preprint, 1996.
[13] E. Odell and T. Schlumprecht, Distortion and stabilized structure in Banach spaces; New geometric phenomena for Banach and Hilbert spaces, in: Proc. Internat. Congress of Mathematicians, Zürich 1994, Birkhäuser, 1995, 955-965.
[14] M. R. Oliver, Borel upper bounds for the Louveau-Veličković and Mazur towers, preprint, 1998.
[15] S. Shelah, Proper Forcing, Lecture Notes in Math. 940, Springer, 1982.