PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1999 | 159 | 3 | 243-258
Tytuł artykułu

Ideals induced by Tsirelson submeasures

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We use Tsirelson's Banach space ([2]) to define an $F_σ$ P-ideal which refutes a conjecture of Mazur and Kechris (see [12, 9, 8]).
Słowa kluczowe
Rocznik
Tom
159
Numer
3
Strony
243-258
Opis fizyczny
Daty
wydano
1998-04-03
Twórcy
autor
  • Department of Mathematics, York University, North York, Ontario, Canada M3J 1P3, ifarah@mathstat.yorku.ca
  • Matematički Institut, Kneza Mihaila 35, 11 000 Beograd, Yugoslavia
Bibliografia
  • [1] P. G. Casazza, W. B. Johnson and L. Tzafriri, On Tsirelson's space, Israel J. Math. 47 (1984), 81-98.
  • [2] P. G. Casazza and T. J. Shura, Tsirelson's Space, Lecture Notes in Math. 1363, Springer, 1980.
  • [3] I. Farah, Analytic quotients, to appear.
  • [4] I. Farah, Analytic ideals and their quotients, PhD thesis, University of Toronto, 1997.
  • [5] I. Farah, Basis problem for turbulent actions, preprint, 1998.
  • [6] W. T. Gowers, Recent results in the theory of infinite-dimensional Banach spaces, in: Proc. Internat. Congress of Mathematicians, Zürich 1994, Birkhäuser, 1995, 932-942.
  • [7] G. Hjorth, Actions by classical Banach spaces, J. Symbolic Logic, to appear.
  • [8] G. Hjorth and A. S. Kechris, New dichotomies for Borel equivalence relations, Bull. Symbolic Logic 3 (1997), 329-346.
  • [9] A. S. Kechris, Rigidity properties of Borel ideals on the integers, Topology Appl. 85 (1998), 195-205.
  • [10] A. Louveau, On the size of quotients by definable equivalence relations, in: Proc. Internat. Congress of Mathematicians, Zürich 1994, Birkhäuser, 1995, 269-276.
  • [11] K. Mazur, $F_σ$-ideals and $ω_1ω_1*$-gaps in the Boolean algebra P(ω)/I, Fund. Math. 138 (1991), 103-111.
  • [12] K. Mazur, Towards the dichotomy for $F_σ$-ideals, preprint, 1996.
  • [13] E. Odell and T. Schlumprecht, Distortion and stabilized structure in Banach spaces; New geometric phenomena for Banach and Hilbert spaces, in: Proc. Internat. Congress of Mathematicians, Zürich 1994, Birkhäuser, 1995, 955-965.
  • [14] M. R. Oliver, Borel upper bounds for the Louveau-Veličković and Mazur towers, preprint, 1998.
  • [15] S. Shelah, Proper Forcing, Lecture Notes in Math. 940, Springer, 1982.
  • [16] S. Solecki, personal communication, 1997.
  • [17] S. Solecki, Analytic ideals, Bull. Symbolic Logic 2 (1996), 339-348.
  • [18] B. Veličković, Definable automorphisms of P(ω)/fin, Proc. Amer. Math. Soc. 96 (1986), 130-135.
  • [19] B. Veličković, A note on Tsirelson type ideals, Fund. Math., this issue.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-fmv159i3p243bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.