ArticleOriginal scientific text

Title

Extending Peano derivatives: necessary and sufficient conditions

Authors 1

Affiliations

  1. Department of Mathematical Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, Wisconsin 53201 U.S.A.

Abstract

The paper treats functions which are defined on closed subsets of [0,1] and which are k times Peano differentiable. A necessary and sufficient condition is given for the existence of a k times Peano differentiable extension of such a function to [0,1]. Several applications of the result are presented. In particular, functions defined on symmetric perfect sets are studied.

Bibliography

  1. Z. Buczolich, Second Peano derivatives are not extendable, Real Anal. Exchange 14 (1988-89), 423-428.
  2. Z. Buczolich and C. Weil, Extending Peano differentiable functions, Atti Sem. Mat. Fis. Univ. Modena 44 (1996), 323-330.
  3. P. Bullen, Denjoy's index and porosity, Real Anal. Exchange 10 (1984-85), 85-144.
  4. A. Denjoy, Sur l'intégration des coefficients différentiels d'ordre supérieur, Fund. Math. 25 (1935), 273-326.
  5. A. Denjoy, Leçons sur le calcul de coefficients d'une série trigonométrique I-IV, Gauthier-Villars, Paris, 1941-1949.
  6. H. Fejzić, The Peano derivatives, doct. dissertation, Michigan State Univ., 1992.
  7. H. Fejzić, J. Mařík and C. Weil, Extending Peano derivatives, Math. Bohem. 119 (1994), 387-406.
  8. H. W. Oliver, The exact Peano derivative, Trans. Amer. Math. Soc. 76 (1954), 444-456.
  9. B. Thomson, Real Functions, Lecture Notes in Math. 1170, Springer, Berlin, 1985.
Pages:
219-229
Main language of publication
English
Received
1997-06-18
Accepted
1998-02-02
Published
1999
Exact and natural sciences