ArticleOriginal scientific text

Title

The concept of boundedness and the Bohr compactification of a MAP Abelian group

Authors 1, 1

Affiliations

  1. Departamento de Matemáticas, Universidad Jaume I, 12071 Castellón, Spain

Abstract

Let G be a maximally almost periodic (MAP) Abelian group and let ℬ be a boundedness on G in the sense of Vilenkin. We study the relations between ℬ and the Bohr topology of G for some well known groups with boundedness (G,ℬ). As an application, we prove that the Bohr topology of a topological group which is topologically isomorphic to the direct product of a locally convex space and an -group, contains "many" discrete C-embedded subsets which are C*-embedded in their Bohr compactification. This result generalizes an analogous theorem of van Douwen for the discrete case and some other ones due to Hartman and Ryll-Nardzewski concerning the existence of I0-sets. We also obtain some results on preservation of compactness for the Bohr topology of several types of MAP Abelian groups, like -groups, locally convex vector spaces and free Abelian topological groups.

Keywords

Bohr topology, LCA group, -group, boundedness, locally convex vector space, DF-space, maximally almost periodic, respects compactness, C-embedded, C*-embedded

Bibliography

  1. W. Banaszczyk, Additive Subgroups of Topological Vector Spaces, Lecture Notes in Math. 1466, Springer, Berlin, 1991.
  2. W. Banaszczyk and E. Martín-Peinador, The Glicksberg Theorem on weakly compact sets for nuclear groups, Ann. New York Acad. Sci. 788 (1996), 34-39.
  3. W. W. Comfort, S. Hernández and F. J. Trigos-Arrieta, Relating a locally compact Abelian group to its Bohr compactification, Adv. Math. 120 (1996), 322-344.
  4. W. W. Comfort and K. A. Ross, Topologies induced by groups of characters, Fund. Math. 55 (1964), 283-291.
  5. W. W. Comfort, F. J. Trigos-Arrieta, and T.-S. Wu, The Bohr compactification, modulo a metrizable subgroup, Fund. Math. 143 (1993), 119-136.
  6. E. K. van Douwen, The maximal totally bounded group topology on G and the biggest minimal G-space, for Abelian groups G, Topology Appl. 34 (1990), 69-91.
  7. J. Galindo, Acotaciones y topologías débiles sobre grupos abelianos maximalmente casi periódicos, Ph.D. Thesis, Universidad Jaume I, Castellón, 1997.
  8. J. Galindo and S. Hernández, On a theorem of van Douwen, preprint, 1998.
  9. L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, New York, 1960.
  10. I. Glicksberg, Uniform boundedness for groups, Canad. J. Math. 14 (1962), 269-276.
  11. S. Hartman and C. Ryll-Nardzewski, Almost periodic extensions of functions, Colloq. Math. 12 (1964), 29-39.
  12. S. Hartman and C. Ryll-Nardzewski, Almost periodic extensions of functions II, ibid. 15 (1966), 79-86.
  13. J. Hejcman, Boundedness in uniform spaces and topological groups, Czechoslovak Math. J. 9 (1962), 544-562.
  14. E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. I, Grundlehren Math. Wiss. 115, Springer, Berlin, 1963.
  15. R. Hughes, Compactness in locally compact groups, Bull. Amer. Math. Soc. 79 (1973), 122-123.
  16. G. Köthe, Topological Vector Spaces, Vol. I, Grundlehren Math. Wiss. 159, Springer, Berlin, 1969.
  17. A. G. Leiderman, S. A. Morris and V. G. Pestov, The free abelian topological group and the free locally convex space on the unit interval, J. London Math. Soc. 56 (1997), 529-538.
  18. M. Moskowitz, Uniform boundedness for non-abelian groups, Math. Proc. Cambridge Philos. Soc. 97 (1985), 107-110.
  19. N. Noble, k-groups and duality, Trans. Amer. Math. Soc. 151 (1970), 551-561.
  20. V. Pestov, Free Abelian topological groups and the Pontryagin-van Kampen duality, Bull. Austral. Math. Soc. 52 (1995), 297-311.
  21. D. Remus and F. J. Trigos-Arrieta, Abelian groups which satisfy Pontryagin duality need not respect compactness, Proc. Amer. Math. Soc. 117 (1993), 1195-1200.
  22. C. Ryll-Nardzewski, Concerning almost periodic extensions of functions, Colloq. Math. 12 (1964), 235-237.
  23. L. J. Sulley, On countable inductive limits of locally compact abelian groups, J. London Math. Soc. (2) 5 (1972), 629-637.
  24. M. Tkachenko, Completeness of free Abelian topological groups, Dokl. Akad. Nauk SSSR 269 (1983), 299-303 (in Russian); English transl.: Soviet Math. Dokl. 27 (1983), 341-345.
  25. F. J. Trigos-Arrieta, Continuity, boundedness, connectedness and the Lindelöf property for topological groups, J. Pure Appl. Algebra 70 (1991), 199-210.
  26. V. V. Uspenskiĭ, On the topology of a free locally convex space, Dokl. Akad. Nauk SSSR 270 (1983), 1334-1337 (in Russian); English transl.: Soviet Math. Dokl. 27 (1983), 781-785.
  27. V. V. Uspenskiĭ, Free topological groups of metrizable spaces, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), 1295-1319 (in Russian); English transl.: Math. USSR-Izv. 37 (1991), 657-680.
  28. M. Valdivia, The space of distributions D' is not Br-complete, Math. Ann. 211 (1974), 145-149.
  29. M. Valdivia, The space D(Ω) is not Br-complete, Ann. Inst. Fourier (Grenoble) 27 (1977), no. 4, 29-43.
  30. N. Varopoulos, Studies in harmonic analysis, Proc. Cambridge Philos. Soc. 60 (1964), 465-516.
  31. R. Venkataraman, Characterization, structure and analysis on abelian groups, Monatsh. Math. 100 (1985), 47-66.
  32. N. Ya. Vilenkin, Theory of characters of topological Abelian groups with a given boundedness, Izv. Akad. Nauk SSSR Ser. Mat. 15 (1951), 439-462 (in Russian).
Pages:
195-218
Main language of publication
English
Received
1997-02-07
Accepted
1998-07-27
Published
1999
Exact and natural sciences