ArticleOriginal scientific textCofinal
Title
Cofinal and subsets of
Authors ,
Abstract
We study properties of and subsets of that are cofinal relative to the orders ≤ (≤*) of full (eventual) domination. We apply these results to prove that the topological statement "Any compact covering mapping from a Borel space onto a Polish space is inductively perfect" is equivalent to the statement " is bounded for ≤*".
Bibliography
- J. Brendle, G. Hjorth and O. Spinas, Regularity properties for dominating projective sets, Ann. Pure Appl. Logic 72 (1995), 291-307.
- J. P. R. Christensen, Necessary and sufficient conditions for the measurability of certain sets of closed sets, Math. Ann. 200 (1973), 189-193.
- G. Debs and J. Saint Raymond, Compact covering and game determinacy, Topology Appl. 68 (1996), 153-185.
- W. Just and H. Wicke, Some conditions under which tri-quotient or compact-covering maps are inductively perfect, ibid. 55 (1994), 289-305.
- A. Louveau, A separation theorem for
sets, Trans. Amer. Math. Soc. 260 (1980), 363-378. - Y. N. Moschovakis, Descriptive Set Theory, North-Holland, Amsterdam, 1980.
- A. V. Ostrovskiĭ, On new classes of mappings associated with k-covering mappings, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1994, no. 4, 24-28 (in Russian); English transl.: Moscow Univ. Math. Bull. 49 (1994), no. 4, 29-23.
- J. Saint Raymond, Caractérisation d'espaces polonais d'après des travaux récents de J. P. R. Christensen et D. Preiss, Sém. Choquet, 11
-12 années, Initiation à l'Analyse, exp. no. 5, Secrétariat Mathématique, Paris, 1973, 10 pp. - J. Saint Raymond, La structure borélienne d'Effros est-elle standard?, Fund. Math. 100 (1979), 201-210.
- O. Spinas, Dominating projective sets in the Baire space, Ann. Pure Appl. Logic 68 (1995), 327-342.