ArticleOriginal scientific text

Title

Hopfian and strongly hopfian manifolds

Authors 1, 2

Affiliations

  1. Department of Mathematics, Pusan National University, Pusan, 609-735, South Korea
  2. Department of Mathematics, The University of Tennessee at Knoxville, Knoxville, Tennessee 37996-1300, U.S.A.

Abstract

Let p: M → B be a proper surjective map defined on an (n+2)-manifold such that each point-preimage is a copy of a hopfian n-manifold. Then we show that p is an approximate fibration over some dense open subset O of the mod 2 continuity set C' and C' ∖ O is locally finite. As an application, we show that a hopfian n-manifold N is a codimension-2 fibrator if χ(N) ≠ 0 or H1(N)2

Bibliography

  1. G. Baumslag and D. Solitar, Some two-generator and one relator non-hopfian groups, Bull. Amer. Math. Soc. 68 (1962), 199-201.
  2. N. Chinen, Manifolds with nonzero Euler characteristic and codimension-2 fibrators, Topology Appl. 86 (1998), 151-167.
  3. N. Chinen, Finite groups and approximate fibrations, ibid., to appear.
  4. D. S. Coram and P. F. Duvall, Approximate fibrations, Rocky Mountain J. Math. 7 (1977), 275-288.
  5. D. S. Coram and P. F. Duvall, Approximate fibrations and a movability condition for maps, Pacific J. Math. 72 (1977), 41-56.
  6. D. S. Coram and P. F. Duvall, Mappings from S3 to S2 whose point inverses have the shape of a circle, Gen. Topology Appl. 10 (1979), 239-246.
  7. R. J. Daverman, Submanifold decompositions that induce approximate fibrations, Topology Appl. 33 (1989), 173-184.
  8. R. J. Daverman, Hyperhopfian groups and approximate fibrations, Compositio Math. 86 (1993), 159-176.
  9. R. J. Daverman, Codimension-2 fibrators with finite fundamental groups, Proc. Amer. Math. Soc., to appear.
  10. R. J. Daverman, 3-manifolds with geometric structure and approximate fibrations, Indiana Univ. Math. J. 40 (1991), 1451-1469.
  11. J. C. Hausmann, Geometric Hopfian and non-Hopfian situations, in: Lecture Notes in Pure and Appl. Math. 105, Marcel Dekker, New York, 1987, 157-166.
  12. J. C. Hausmann, Fundamental group problems related to Poincaré duality, in: CMS Conf. Proc. 2, Amer. Math. Soc., Providence, R.I., 1982, 327-336.
  13. J. Hempel, 3-manifolds, Ann. of Math. Stud. 86, Princeton Univ. Press, Princeton, N.J., 1976.
  14. R. Hirshon, Some results on direct sum of hopfian groups, Ph.D. Dissertation, Adelphi Univ., 1967.
  15. Y. H. Im, Products of surfaces that induce approximate fibrations, Houston J. Math. 21 (1995), 339-348.
  16. Y. Kim, Strongly hopfian manifolds as codimension-2 fibrators, Topology Appl., to appear.
  17. Y. Kim, Manifolds with hyperhopfian fundamental group as codimension-2 fibrators, ibid., to appear.
  18. A. N. Parshin and I. R. Shafarevich, Algebra VII, Encyclopaedia Math. Sci. 58, Springer, 1993.
  19. J. Roitberg, Residually finite, hopfian and co-hopfian spaces, in: Contemp. Math. 37, Amer. Math. Soc., 1985, 131-144.
Pages:
127-134
Main language of publication
English
Received
1998-03-26
Accepted
1998-08-26
Published
1999
Exact and natural sciences