ArticleOriginal scientific text
Title
The Gaussian measure on algebraic varieties
Authors 1, 1
Affiliations
- Institut für Reine Mathematik, Humboldt-Universität zu Berlin, Ziegelstr. 13 A D-10099 Berlin, Germany
Abstract
We prove that the ring ℝ[M] of all polynomials defined on a real algebraic variety is dense in the Hilbert space , where dμ denotes the volume form of M and the Gaussian measure on M.
Keywords
Gaussian measure, algebraic variety
Bibliography
- [Agr] I. Agricola, Dissertation am Institut für Reine Mathematik der Humboldt-Universität zu Berlin, in preparation.
- [Brö] L. Bröcker, Semialgebraische Geometrie, Jahresber. Deutsch. Math.-Verein. 97 (1995), 130-156.
- [Mau] K. Maurin, Analysis, Vol. 2, Reidel and PWN-Polish Sci. Publ., Dordrecht and Warszawa, 1980.
- [Mi1] J. Milnor, On the Betti numbers of real varieties, Proc. Amer. Math. Soc. 15 (1964), 275-280.
- [Mi2] J. Milnor, Euler characteristics and finitely additive Steiner measures, in: Collected Papers, Vol. 1, Publish or Perish, 1994, 213-234.
- [Rud] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1966.
- [Sto1] W. Stoll, The growth of the area of a transcendental analytic set. I, Math. Ann. 156 (1964), 47-78.
- [Sto2] W. Stoll, The growth of the area of a transcendental analytic set. II, ibid. 156 (1964), 144-170.