ArticleOriginal scientific text

Title

The Gaussian measure on algebraic varieties

Authors 1, 1

Affiliations

  1. Institut für Reine Mathematik, Humboldt-Universität zu Berlin, Ziegelstr. 13 A D-10099 Berlin, Germany

Abstract

We prove that the ring ℝ[M] of all polynomials defined on a real algebraic variety Mn is dense in the Hilbert space L2(M,e-|x|2dμ), where dμ denotes the volume form of M and dν=e-|x|2dμ the Gaussian measure on M.

Keywords

Gaussian measure, algebraic variety

Bibliography

  1. [Agr] I. Agricola, Dissertation am Institut für Reine Mathematik der Humboldt-Universität zu Berlin, in preparation.
  2. [Brö] L. Bröcker, Semialgebraische Geometrie, Jahresber. Deutsch. Math.-Verein. 97 (1995), 130-156.
  3. [Mau] K. Maurin, Analysis, Vol. 2, Reidel and PWN-Polish Sci. Publ., Dordrecht and Warszawa, 1980.
  4. [Mi1] J. Milnor, On the Betti numbers of real varieties, Proc. Amer. Math. Soc. 15 (1964), 275-280.
  5. [Mi2] J. Milnor, Euler characteristics and finitely additive Steiner measures, in: Collected Papers, Vol. 1, Publish or Perish, 1994, 213-234.
  6. [Rud] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1966.
  7. [Sto1] W. Stoll, The growth of the area of a transcendental analytic set. I, Math. Ann. 156 (1964), 47-78.
  8. [Sto2] W. Stoll, The growth of the area of a transcendental analytic set. II, ibid. 156 (1964), 144-170.
Pages:
91-98
Main language of publication
English
Received
1998-04-25
Accepted
1998-09-08
Published
1999
Exact and natural sciences