ArticleOriginal scientific text
Title
Hausdorff ’s theorem for posets that satisfy the finite antichain property
Authors 1, 2
Affiliations
- Department of Mathematics and Computer Science, Ben-Gurion University, Be'er Sheva, Israel
- Laboratoire de Mathématiques, Université de Savoie, 73011 Chambéry, France
Abstract
Hausdorff characterized the class of scattered linear orderings as the least
family of linear orderings that includes the ordinals and is closed under ordinal summations
and inversions. We formulate and prove a corresponding characterization of the class of
scattered partial orderings that satisfy the finite antichain condition (FAC).
Consider the least class of partial orderings containing the class of well-founded
orderings that satisfy the FAC and is closed under the following operations: (1) inversion,
(2) lexicographic sum, and (3) augmentation (where augments ⟨P, ≤⟩ iff
whenever x ≤ y). We show that this closure consists of all scattered posets satisfying the
Keywords
ordinals, partial orderings, scattered partial orderings, Hausdorff's theorem
Bibliography
- U. Abraham, A note on Dilworth's theorem in the infinite case, Order 4 (1987), 107-125.
- R. Bonnet et M. Pouzet, Extension et stratification d'ensembles dispersés, C. R. Acad. Sci. Paris Sér. A 168 (1969), 1512-1515.
- P. W. Carruth, Arithmetic of ordinals with applications to the theory of ordered abelian groups, Bull. Amer. Math. Soc. 48 (1942), 262-271.
- R. Fraïssé, Theory of Relations, Stud. Logic Found. Math. 118, North-Holland, 1986.
- F. Hausdorff, Grundzüge einer Theorie der geordneten Mengen, Math. Ann. 65 (1908), 435-505.
- G. Hessenberg, Grundbegriffe der Mengenlehre, Abh. Friesschen Schule neue Folge 4 (1906).
- A. Lévy, Basic Set Theory, Springer, 1979.
- W. Sierpiński, Cardinal and Ordinal Numbers, Monograf. Mat. 34, PWN, Warszawa, 1958.