EN
This is the first part of the work studying the family $\mathfrak{F}$ of all rational maps of degree three with two superattracting fixed points. We determine the topological type of the moduli space of $\mathfrak{F}$ and give a detailed study of the subfamily $ℱ_2$ consisting of maps with a critical point which is periodic of period 2. In particular, we describe a parabolic bifurcation in $ℱ_2$ from Newton maps to maps with so-called exotic basins.