ArticleOriginal scientific text
Title
From Newton’s method to exotic basins Part I: The parameter space
Authors 1
Affiliations
- Institute of Mathematics, Warsaw University, Banacha 2, 02-097 Warszawa, Poland
Abstract
This is the first part of the work studying the family of all rational maps of degree three with two superattracting fixed points. We determine the topological type of the moduli space of and give a detailed study of the subfamily consisting of maps with a critical point which is periodic of period 2. In particular, we describe a parabolic bifurcation in from Newton maps to maps with so-called exotic basins.
Bibliography
- [Ba] K. Barański, Connectedness of the basin of attraction for rational maps, Proc. Amer. Math. Soc. (6) 126 (1998), 1857-1866.
- [BH] B. Branner and J. Hubbard, The iteration of cubic polynomials, II: Patterns and parapatterns, Acta Math. 169 (1992), 229-325.
- [CGS] J. H. Curry, L. Garnett and D. Sullivan, On the iteration of a rational function: computer experiments with Newton's method, Comm. Math. Phys. 91 (1983), 267-277.
- [DH1] A. Douady et J. H. Hubbard, Etude dynamique des polynômes complexes, I et II, avec la collaboration de P. Lavours, Tan Lei et P. Sentenac, Publication d'Orsay 84-02, 85-04, 1984-1985.
- [DH2] A. Douady et J. H. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4) 18 (1985), 287-343.
- [HP] F. von Haeseler and H.-O. Peitgen, Newton's method and complex dynamical systems, Acta Appl. Math. 13 (1988), 3-58.
- [He] J. Head, The combinatorics of Newton's method for cubic polynomials, Ph.D. thesis, Cornell University, Ithaca, 1987.
- [MSS] R. Ma né, P. Sad and D. Sullivan, On the dynamics of rational maps, Ann. Sci. École Norm. Sup. (4) 16 (1983), 193-217.
- [Mi1] J. Milnor, Dynamics in one complex variable: introductory lectures, preprint, SUNY at Stony Brook, IMS # 1990/5.
- [Mi2] J. Milnor, Geometry and dynamics of quadratic rational maps, Experiment. Math. 2 (1993), 37-83.
- [P1] F. Przytycki, Iterations of rational functions: which hyperbolic components contain polynomials?, Fund. Math. 149 (1996), 95-118.
- [P2] F. Przytycki, Remarks on simple-connectedness of basins of sinks for iterations of rational maps, in: Banach Center Publ. 23, PWN, 1989, 229-235.
- [Re1] M. Rees, A partial description of parameter space of rational maps of degree two, I: Acta Math. 168 (1992), 11-87; II: Proc. London Math. Soc. (3) 70 (1995), 644-690.
- [Re2] M. Rees, Components of degree two hyperbolic rational maps, Invent. Math. 100 (1990), 357-382.
- [Ro] P. Roesch, Topologie locale des méthodes de Newton cubiques, Ph.D. thesis, École Norm. Sup. de Lyon, 1997.
- [Se] G. Segal, The topology of spaces of rational functions, Acta Math. 143 (1979), 39-72.
- [Sh] M. Shishikura, The connectivity of the Julia set of rational maps and fixed points, preprint, Inst. Hautes Études Sci., Bures-sur-Yvette, 1990.
- [Ta] Tan, Branched coverings and cubic Newton maps, Fund. Math. 154 (1997), 207-260.