ArticleOriginal scientific text

Title

Sur les rétractes absolus Pn -valués de dimension finie

Authors 1

Affiliations

  1. Universite Paris 6, UFR 920, Boîte courrier 172, 4 place Jussieu, 75252 Paris Cedex 05, France

Abstract

We prove that a k-dimensional hereditarily indecomposable metrisable continuum is not a Pk-valued absolute retract. We deduce from this that none of the classical characterizations of ANR (metric) extends to the class of stratifiable spaces.

Keywords

Pk-valued absolute retracts, stratifiable spaces, ANR.

Bibliography

  1. R. H. Bing, Higher-dimensional hereditarily indecomposable continua, Trans. Amer. Math. Soc. 71 (1951), 267-273.
  2. M. Brown, Some applications of an approximation theorem for inverse limits, Proc. Amer. Math. Soc. 11 (1960), 478-483.
  3. R. Cauty, Un espace métrique linéaire qui n'est pas un rétracte absolu, Fund. Math. 146 (1994), 85-99.
  4. R. Cauty, Quelques problèmes sur les groupes contractiles et la théorie des rétractes, Mat. Studii 3 (1994), 111-116.
  5. W. E. Haveri, Locally contractible spaces that are absolute neighborhood retracts, Proc. Amer. Math. Soc. 40 (1973), 280–284
Pages:
241-248
Main language of publication
French
Received
1997-11-12
Published
1998
Exact and natural sciences