ArticleOriginal scientific text
Title
Sur les rétractes absolus Pn -valués de dimension finie
Authors 1
Affiliations
- Universite Paris 6, UFR 920, Boîte courrier 172, 4 place Jussieu, 75252 Paris Cedex 05, France
Abstract
We prove that a k-dimensional hereditarily indecomposable metrisable continuum is not a -valued absolute retract. We deduce from this that none of the classical characterizations of ANR (metric) extends to the class of stratifiable spaces.
Keywords
Bibliography
- R. H. Bing, Higher-dimensional hereditarily indecomposable continua, Trans. Amer. Math. Soc. 71 (1951), 267-273.
- M. Brown, Some applications of an approximation theorem for inverse limits, Proc. Amer. Math. Soc. 11 (1960), 478-483.
- R. Cauty, Un espace métrique linéaire qui n'est pas un rétracte absolu, Fund. Math. 146 (1994), 85-99.
- R. Cauty, Quelques problèmes sur les groupes contractiles et la théorie des rétractes, Mat. Studii 3 (1994), 111-116.
- W. E. Haveri, Locally contractible spaces that are absolute neighborhood retracts, Proc. Amer. Math. Soc. 40 (1973), 280–284