ArticleOriginal scientific text
Title
Almost disjoint families and property (a)
Authors 1, 2
Affiliations
- Department of Mathematics, Ohio University, Athens, Ohio 45701, U.S.A.
- Department of Mathematical Sciences, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, U.S.A.
Abstract
We consider the question: when does a Ψ-space satisfy property (a)? We show that if then the Ψ-space Ψ(A) satisfies property (a), but in some Cohen models the negation of CH holds and every uncountable Ψ-space fails to satisfy property (a). We also show that in a model of Fleissner and Miller there exists a Ψ-space of cardinality which has property (a). We extend a theorem of Matveev relating the existence of certain closed discrete subsets with the failure of property (a).
Keywords
property (a), density, extent, almost disjoint families, Ψ-space, CH, GCH, Martin's Axiom, , Cohen forcing, Q-set, weakly inaccessible cardinal.
Bibliography
- M. G. Bell, On the combinatorial principal P(c), Fund. Math. 114 (1981), 149-157.
- E. K. van Douwen, The integers and topology, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, 1984, 111-167.
- R. Engelking, General Topology, PWN, Warszawa, 1977.
- W. G. Fleissner and A. W. Miller, On Q-sets, Proc. Amer. Math. Soc. 78 (1980), 280-284.
- D. H. Fremlin, Consequences of Martin's Axiom, Cambridge Univ. Press, Cambridge, 1984.
- L. Gillman and M. Jerison, Rings of Continuous Functions, van Nostrand, Princeton, 1960.
- S. H. Hechler, Short complete nested sequences in βN\N and small maximal almost-disjoint families, Gen. Topology Appl. 2 (1972), 139-149.
- R. E. Hodel, Cardinal Functions I, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, 1984, 1-61.
- W. Just, M. V. Matveev and P. J. Szeptycki, Some results on property (a), Topology Appl., to appear.
- K. Kunen, Set Theory, North-Holland, 1980.
- M. V. Matveev, Absolutely countably compact spaces, Topology Appl. 58 (1994), 81-92.
- M. V. Matveev, On feebly compact spaces with property (a), preprint.
- M. V. Matveev, Some questions on property (a), Questions Answers Gen. Topology 15 (1997), 103-111.
- M. E. Rudin, I. Stares and J. E. Vaughan, From countable compactness to absolute countable compactness, Proc. Amer. Math. Soc. 125 (1997), 927-934.