Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1998 | 158 | 3 | 195-228

Tytuł artykułu

Mapping class group of a handlebody

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
Let B be a 3-dimensional handlebody of genus g. Let ℳ be the group of the isotopy classes of orientation preserving homeomorphisms of B. We construct a 2-dimensional simplicial complex X, connected and simply-connected, on which ℳ acts by simplicial transformations and has only a finite number of orbits. From this action we derive an explicit finite presentation of ℳ.

Twórcy

  • Department of Mathematics, Technion 32000, Haifa, Israel

Bibliografia

  • [1] Bergau, P. und Mennicke, J., Über topologische Abbildungen der Bretzelfläche vom Geschlecht 2, Math. Z. 74 (1960), 414-435.
  • [2] Birman, J. S., Braids, Links, and Mapping Class Groups, Ann. of Math. Stud. 82, Princeton Univ. Press, 1974.
  • [3] Birman, J. S. and Hilden, H., On mapping class groups of closed surfaces as covering spaces, in: Advances in the Theory of Riemann Surfaces, Ann. of Math. Stud. 66, Princeton Univ. Press, 1971, 81-115.
  • [4] Dehn, M., Die Gruppe der Abbildungsklassen, Acta Math. 69 (1938), 135-206.
  • [5] Epstein, D. B. A., Curves on 2-manifolds and isotopies, ibid. 115 (1966), 83-107.
  • [6] Harer, J., The second homology group of the mapping class group of an orientable surface, Invent. Math. 72 (1983), 221-239.
  • [7] Hatcher, A. and Thurston, W., A presentation for the mapping class group of a closed orientable surface, Topology 19 (1980), 221-237.
  • [8] Heusner, M., Eine Präsentation der Abbildungsklassengruppe einer geschlossenen, orientierbaren Fläche, Diplomarbeit, University of Frankfurt.
  • [9] Humphries, S., Generators for the mapping class group, in: Topology of Low-Dimensional Manifolds, Lecture Notes in Math. 722, Springer, 1979, 44-47.
  • [10] Johnson, D., Homeomorphisms of a surface which act trivially on homology, Proc. Amer. Math. Soc. 75 (1979), 119-125.
  • [11] Laudenbach, F., Présentation du groupe de difféotopies d'une surface compacte orientable, in: Travaux de Thurston sur les surfaces, Astérisque 66-67 (1979), 267-282.
  • [12] Lickorish, W. B. R., A finite set of generators for the homeotopy group of a 2-manifold, Proc. Cambridge Philos. Soc. 60 (1964), 769-778.
  • [13] Suzuki, S., On homeomorphisms of a 3-dimensional handlebody, Canad. J. Math. 29 (1977), 111-124.
  • [14] Wajnryb, B., A simple presentation for the mapping class group of an orientable surface, Israel J. Math. 45 (1983), 157-174.

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-fmv158i3p195bwm