ArticleOriginal scientific text

Title

Mapping class group of a handlebody

Authors 1

Affiliations

  1. Department of Mathematics, Technion 32000, Haifa, Israel

Abstract

Let B be a 3-dimensional handlebody of genus g. Let ℳ be the group of the isotopy classes of orientation preserving homeomorphisms of B. We construct a 2-dimensional simplicial complex X, connected and simply-connected, on which ℳ acts by simplicial transformations and has only a finite number of orbits. From this action we derive an explicit finite presentation of ℳ.

Bibliography

  1. Bergau, P. und Mennicke, J., Über topologische Abbildungen der Bretzelfläche vom Geschlecht 2, Math. Z. 74 (1960), 414-435.
  2. Birman, J. S., Braids, Links, and Mapping Class Groups, Ann. of Math. Stud. 82, Princeton Univ. Press, 1974.
  3. Birman, J. S. and Hilden, H., On mapping class groups of closed surfaces as covering spaces, in: Advances in the Theory of Riemann Surfaces, Ann. of Math. Stud. 66, Princeton Univ. Press, 1971, 81-115.
  4. Dehn, M., Die Gruppe der Abbildungsklassen, Acta Math. 69 (1938), 135-206.
  5. Epstein, D. B. A., Curves on 2-manifolds and isotopies, ibid. 115 (1966), 83-107.
  6. Harer, J., The second homology group of the mapping class group of an orientable surface, Invent. Math. 72 (1983), 221-239.
  7. Hatcher, A. and Thurston, W., A presentation for the mapping class group of a closed orientable surface, Topology 19 (1980), 221-237.
  8. Heusner, M., Eine Präsentation der Abbildungsklassengruppe einer geschlossenen, orientierbaren Fläche, Diplomarbeit, University of Frankfurt.
  9. Humphries, S., Generators for the mapping class group, in: Topology of Low-Dimensional Manifolds, Lecture Notes in Math. 722, Springer, 1979, 44-47.
  10. Johnson, D., Homeomorphisms of a surface which act trivially on homology, Proc. Amer. Math. Soc. 75 (1979), 119-125.
  11. Laudenbach, F., Présentation du groupe de difféotopies d'une surface compacte orientable, in: Travaux de Thurston sur les surfaces, Astérisque 66-67 (1979), 267-282.
  12. Lickorish, W. B. R., A finite set of generators for the homeotopy group of a 2-manifold, Proc. Cambridge Philos. Soc. 60 (1964), 769-778.
  13. Suzuki, S., On homeomorphisms of a 3-dimensional handlebody, Canad. J. Math. 29 (1977), 111-124.
  14. Wajnryb, B., A simple presentation for the mapping class group of an orientable surface, Israel J. Math. 45 (1983), 157-174.
Pages:
195-228
Main language of publication
English
Received
1997-09-02
Accepted
1998-01-05
Published
1998
Exact and natural sciences